7,887 research outputs found

    Hierarchical Stochastic Block Model for Community Detection in Multiplex Networks

    Full text link
    Multiplex networks have become increasingly more prevalent in many fields, and have emerged as a powerful tool for modeling the complexity of real networks. There is a critical need for developing inference models for multiplex networks that can take into account potential dependencies across different layers, particularly when the aim is community detection. We add to a limited literature by proposing a novel and efficient Bayesian model for community detection in multiplex networks. A key feature of our approach is the ability to model varying communities at different network layers. In contrast, many existing models assume the same communities for all layers. Moreover, our model automatically picks up the necessary number of communities at each layer (as validated by real data examples). This is appealing, since deciding the number of communities is a challenging aspect of community detection, and especially so in the multiplex setting, if one allows the communities to change across layers. Borrowing ideas from hierarchical Bayesian modeling, we use a hierarchical Dirichlet prior to model community labels across layers, allowing dependency in their structure. Given the community labels, a stochastic block model (SBM) is assumed for each layer. We develop an efficient slice sampler for sampling the posterior distribution of the community labels as well as the link probabilities between communities. In doing so, we address some unique challenges posed by coupling the complex likelihood of SBM with the hierarchical nature of the prior on the labels. An extensive empirical validation is performed on simulated and real data, demonstrating the superior performance of the model over single-layer alternatives, as well as the ability to uncover interesting structures in real networks

    Comparing Efficiency Across Markets: An Extension and Critique of the Zhang and Bartels (1998) Methodology

    Get PDF
    The use of non-parametric frontier methods for the evaluation of product market efficiency in heterogeneous markets seems to have gained some popularity recently. However, the statistical properties of these frontier estimators have been largely ignored. The main point is that nonparametric frontier estimators are biased and that the degree of bias depends on specific sample properties, most importantly sample size and number of dimensions of the model. To investigate the effect of this bias on comparing market efficiency, this contribution estimates the efficiency for several datasets for two main product categories. Following Zhang and Bartels (1998), these results comprise re-estimates for the larger samples limiting their size to that of the smaller samples when the model dimensions for different samples are identical. Furthermore, sample sizes are adjusted to mitigate the eventual differences in dimensions in specification. This allows comparing market efficiency for different markets on a more equal footing, since it reduces the bias effect to a minimum making the comparison of market efficiency possible. However, the article also points out the critical limitations of this Zhang and Bartels (1998) approach in certain respects. Apart from reporting these negative results, we also offer some suggestions for future work.Market Efficiency, Heterogeneous Product Markets, Bias, Monte-Carlo Simulation

    A systematic review of the role of bisphosphonates in metastatic disease

    Get PDF
    Objectives: To identify evidence for the role of bisphosphonates in malignancy for the treatment of hypercalcaemia, prevention of skeletal morbidity and use in the adjuvant setting. To perform an economic review of current literature and model the cost effectiveness of bisphosphonates in the treatment of hypercalcaemia and prevention of skeletal morbidity Data sources: Electronic databases (1966-June 2001). Cochrane register. Pharmaceutical companies. Experts in the field. Handsearching of abstracts and leading oncology journals (1999-2001). Review methods: Two independent reviewers assessed studies for inclusion, according to predetermined criteria, and extracted relevant data. Overall event rates were pooled in a meta-analysis, odds ratios ( OR) were given with 95% confidence intervals (CI). Where data could not be combined, studies were reported individually and proportions compared using chi- squared analysis. Cost and cost-effectiveness were assessed by a decision analytic model comparing different bisphosphonate regimens for the treatment of hypercalcaemia; Markov models were employed to evaluate the use of bisphosphonates to prevent skeletal-related events (SRE) in patients with breast cancer and multiple myeloma. Results: For acute hypercalcaemia of malignancy, bisphosphonates normalised serum calcium in >70% of patients within 2-6 days. Pamidronate was more effective than control, etidronate, mithramycin and low-dose clodronate, but equal to high dose clodronate, in achieving normocalcaemia. Pamidronate prolongs ( doubles) the median time to relapse compared with clodronate or etidronate. For prevention of skeletal morbidity, bisphosphonates compared with placebo, significantly reduced the OR for fractures (OR [95% CI], vertebral, 0.69 [0.57-0.84], non-vertebral, 0.65 [0.54-0.79], combined, 0.65 [0.55-0.78]) radiotherapy 0.67 [0.57-0.79] and hypercalcaemia 0.54 [0.36-0.81] but not orthopaedic surgery 0.70 [0.46-1.05] or spinal cord compression 0.71 [0.47-1.08]. However, reduction in orthopaedic surgery was significant in studies that lasted over a year 0.59 [0.39-0.88]. Bisphosphonates significantly increased the time to first SRE but did not affect survival. Subanalyses were performed for disease groups, drugs and route of administration. Most evidence supports the use of intravenous aminobisphosphonates. For adjuvant use of bisphosphonates, Clodronate, given to patients with primary operable breast cancer and no metastatic disease, significantly reduced the number of patients developing bone metastases. This benefit was not maintained once regular administration had been discontinued. Two trials reported significant survival advantages in the treated groups. Bisphosphonates reduce the number of bone metastases in patients with both early and advanced breast cancer. Bisphosphonates are well tolerated with a low incidence of side-effects. Economic modelling showed that for acute hypercalcaemia, drugs with the longest cumulative duration of normocalcaemia were most cost-effective. Zoledronate 4 mg was the most costly, but most cost-effective treatment. For skeletal morbidity, Markov models estimated that the overall cost of bisphosphonate therapy to prevent an SRE was pound250 and pound1500 per event for patients with breast cancer and multiple myeloma, respectively. Bisphosphonate treatment is sometimes cost-saving in breast cancer patients where fractures are prevented. Conclusions: High dose aminobisphosphonates are most effective for the treatment of acute hypercalcaemia and delay time to relapse. Bisphosphonates significantly reduce SREs and delay the time to first SRE in patients with bony metastatic disease but do not affect survival. Benefit is demonstrated after administration for at least 6-12 months. The greatest body of evidence supports the use of intravenous aminobisphosphonates. Further evidence is required to support use in the adjuvant setting

    Debates—Stochastic subsurface hydrology from theory to practice: why stochastic modeling has not yet permeated into practitioners?

    Get PDF
    This is the peer reviewed version of the following article: [Sanchez-Vila, X., and D. Fernàndez-Garcia (2016), Debates—Stochastic subsurface hydrology from theory to practice: Why stochastic modeling has not yet permeated into practitioners?, Water Resour. Res., 52, 9246–9258, doi:10.1002/2016WR019302], which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/2016WR019302/abstract. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-ArchivingWe address modern topics of stochastic hydrogeology from their potential relevance to real modeling efforts at the field scale. While the topics of stochastic hydrogeology and numerical modeling have become routine in hydrogeological studies, nondeterministic models have not yet permeated into practitioners. We point out a number of limitations of stochastic modeling when applied to real applications and comment on the reasons why stochastic models fail to become an attractive alternative for practitioners. We specifically separate issues corresponding to flow, conservative transport, and reactive transport. The different topics addressed are emphasis on process modeling, need for upscaling parameters and governing equations, relevance of properly accounting for detailed geological architecture in hydrogeological modeling, and specific challenges of reactive transport. We end up by concluding that the main responsible for nondeterministic models having not yet permeated in industry can be fully attributed to researchers in stochastic hydrogeology.Peer ReviewedPostprint (author's final draft

    Social health insurance

    Get PDF

    Public health training in Europe. Development of European masters degrees in public health.

    Get PDF
    BACKGROUND: Changing political and economic relations in Europe mean that there are new challenges for public health and public health training. There have been several attempts to develop training at the master's level in public health which is focused on meeting the new needs. These have failed due to being too inflexible to allow participation by schools of public health. METHODS: A project funded by the European Union involving public health trainers has developed a new approach which allows participating schools to retain their national differences and work within local rules and traditions, but which aims to introduce the European dimension into public health training. This paper reports the conclusions of this project. CONCLUSIONS: A network of schools wishing to develop European Master's degrees is being established and other schools offering good quality programmes will be able to join

    Multi-Scale Simulation of Complex Systems: A Perspective of Integrating Knowledge and Data

    Full text link
    Complex system simulation has been playing an irreplaceable role in understanding, predicting, and controlling diverse complex systems. In the past few decades, the multi-scale simulation technique has drawn increasing attention for its remarkable ability to overcome the challenges of complex system simulation with unknown mechanisms and expensive computational costs. In this survey, we will systematically review the literature on multi-scale simulation of complex systems from the perspective of knowledge and data. Firstly, we will present background knowledge about simulating complex system simulation and the scales in complex systems. Then, we divide the main objectives of multi-scale modeling and simulation into five categories by considering scenarios with clear scale and scenarios with unclear scale, respectively. After summarizing the general methods for multi-scale simulation based on the clues of knowledge and data, we introduce the adopted methods to achieve different objectives. Finally, we introduce the applications of multi-scale simulation in typical matter systems and social systems
    • …
    corecore