104,390 research outputs found

    Graph-Based Approach for 3D Object Duplicate Detection

    Get PDF
    In this paper, we consider the challenging problem of object duplicate detection and localization. Several applications require efficient object duplicate detection methods, such as automatic video and image tagging, video surveillance, and high level image or video search. In this paper, a novel graph-based approach for 3D object duplicate detection in still images is proposed. A graph model is used to represent the spatial information of the object in order to avoid making an explicit 3D object model. Therefore, better performance is achieved in terms of robustness and computational complexity

    SLAM++: Simultaneous Localisation and Mapping at the Level of Objects

    Full text link
    We present the major advantages of a new ‘object ori-ented ’ 3D SLAM paradigm, which takes full advantage in the loop of prior knowledge that many scenes consist of repeated, domain-specific objects and structures. As a hand-held depth camera browses a cluttered scene, real-time 3D object recognition and tracking provides 6DoF camera-object constraints which feed into an explicit graph of objects, continually refined by efficient pose-graph opti-misation. This offers the descriptive and predictive power of SLAM systems which perform dense surface reconstruc-tion, but with a huge representation compression. The ob-ject graph enables predictions for accurate ICP-based cam-era to model tracking at each live frame, and efficient ac-tive search for new objects in currently undescribed image regions. We demonstrate real-time incremental SLAM in large, cluttered environments, including loop closure, relo-calisation and the detection of moved objects, and of course the generation of an object level scene description with the potential to enable interaction. 1

    Unsupervised Action Proposal Ranking through Proposal Recombination

    Full text link
    Recently, action proposal methods have played an important role in action recognition tasks, as they reduce the search space dramatically. Most unsupervised action proposal methods tend to generate hundreds of action proposals which include many noisy, inconsistent, and unranked action proposals, while supervised action proposal methods take advantage of predefined object detectors (e.g., human detector) to refine and score the action proposals, but they require thousands of manual annotations to train. Given the action proposals in a video, the goal of the proposed work is to generate a few better action proposals that are ranked properly. In our approach, we first divide action proposal into sub-proposal and then use Dynamic Programming based graph optimization scheme to select the optimal combinations of sub-proposals from different proposals and assign each new proposal a score. We propose a new unsupervised image-based actioness detector that leverages web images and employs it as one of the node scores in our graph formulation. Moreover, we capture motion information by estimating the number of motion contours within each action proposal patch. The proposed method is an unsupervised method that neither needs bounding box annotations nor video level labels, which is desirable with the current explosion of large-scale action datasets. Our approach is generic and does not depend on a specific action proposal method. We evaluate our approach on several publicly available trimmed and un-trimmed datasets and obtain better performance compared to several proposal ranking methods. In addition, we demonstrate that properly ranked proposals produce significantly better action detection as compared to state-of-the-art proposal based methods

    Efficient Constellation-Based Map-Merging for Semantic SLAM

    Full text link
    Data association in SLAM is fundamentally challenging, and handling ambiguity well is crucial to achieve robust operation in real-world environments. When ambiguous measurements arise, conservatism often mandates that the measurement is discarded or a new landmark is initialized rather than risking an incorrect association. To address the inevitable `duplicate' landmarks that arise, we present an efficient map-merging framework to detect duplicate constellations of landmarks, providing a high-confidence loop-closure mechanism well-suited for object-level SLAM. This approach uses an incrementally-computable approximation of landmark uncertainty that only depends on local information in the SLAM graph, avoiding expensive recovery of the full system covariance matrix. This enables a search based on geometric consistency (GC) (rather than full joint compatibility (JC)) that inexpensively reduces the search space to a handful of `best' hypotheses. Furthermore, we reformulate the commonly-used interpretation tree to allow for more efficient integration of clique-based pairwise compatibility, accelerating the branch-and-bound max-cardinality search. Our method is demonstrated to match the performance of full JC methods at significantly-reduced computational cost, facilitating robust object-based loop-closure over large SLAM problems.Comment: Accepted to IEEE International Conference on Robotics and Automation (ICRA) 201
    • …
    corecore