3,255 research outputs found

    Inequality and Network Formation Games

    Full text link
    This paper addresses the matter of inequality in network formation games. We employ a quantity that we are calling the Nash Inequality Ratio (NIR), defined as the maximal ratio between the highest and lowest costs incurred to individual agents in a Nash equilibrium strategy, to characterize the extent to which inequality is possible in equilibrium. We give tight upper bounds on the NIR for the network formation games of Fabrikant et al. (PODC '03) and Ehsani et al. (SPAA '11). With respect to the relationship between equality and social efficiency, we show that, contrary to common expectations, efficiency does not necessarily come at the expense of increased inequality.Comment: 27 pages. 4 figures. Accepted to Internet Mathematics (2014

    EGOIST: Overlay Routing Using Selfish Neighbor Selection

    Full text link
    A foundational issue underlying many overlay network applications ranging from routing to P2P file sharing is that of connectivity management, i.e., folding new arrivals into an existing overlay, and re-wiring to cope with changing network conditions. Previous work has considered the problem from two perspectives: devising practical heuristics for specific applications designed to work well in real deployments, and providing abstractions for the underlying problem that are analytically tractable, especially via game-theoretic analysis. In this paper, we unify these two thrusts by using insights gleaned from novel, realistic theoretic models in the design of Egoist – a prototype overlay routing system that we implemented, deployed, and evaluated on PlanetLab. Using measurements on PlanetLab and trace-based simulations, we demonstrate that Egoist's neighbor selection primitives significantly outperform existing heuristics on a variety of performance metrics, including delay, available bandwidth, and node utilization. Moreover, we demonstrate that Egoist is competitive with an optimal, but unscalable full-mesh approach, remains highly effective under significant churn, is robust to cheating, and incurs minimal overhead. Finally, we discuss some of the potential benefits Egoist may offer to applications.National Science Foundation (CISE/CSR 0720604, ENG/EFRI 0735974, CISE/CNS 0524477, CNS/NeTS 0520166, CNS/ITR 0205294; CISE/EIA RI 0202067; CAREER 04446522); European Commission (RIDS-011923

    Optimal configuration of active and backup servers for augmented reality cooperative games

    Get PDF
    Interactive applications as online games and mobile devices have become more and more popular in recent years. From their combination, new and interesting cooperative services could be generated. For instance, gamers endowed with Augmented Reality (AR) visors connected as wireless nodes in an ad-hoc network, can interact with each other while immersed in the game. To enable this vision, we discuss here a hybrid architecture enabling game play in ad-hoc mode instead of the traditional client-server setting. In our architecture, one of the player nodes also acts as the server of the game, whereas other backup server nodes are ready to become active servers in case of disconnection of the network i.e. due to low energy level of the currently active server. This allows to have a longer gaming session before incurring in disconnections or energy exhaustion. In this context, the server election strategy with the aim of maximizing network lifetime is not so straightforward. To this end, we have hence analyzed this issue through a Mixed Integer Linear Programming (MILP) model and both numerical and simulation-based analysis shows that the backup servers solution fulfills its design objective

    Large scale probabilistic available bandwidth estimation

    Full text link
    The common utilization-based definition of available bandwidth and many of the existing tools to estimate it suffer from several important weaknesses: i) most tools report a point estimate of average available bandwidth over a measurement interval and do not provide a confidence interval; ii) the commonly adopted models used to relate the available bandwidth metric to the measured data are invalid in almost all practical scenarios; iii) existing tools do not scale well and are not suited to the task of multi-path estimation in large-scale networks; iv) almost all tools use ad-hoc techniques to address measurement noise; and v) tools do not provide enough flexibility in terms of accuracy, overhead, latency and reliability to adapt to the requirements of various applications. In this paper we propose a new definition for available bandwidth and a novel framework that addresses these issues. We define probabilistic available bandwidth (PAB) as the largest input rate at which we can send a traffic flow along a path while achieving, with specified probability, an output rate that is almost as large as the input rate. PAB is expressed directly in terms of the measurable output rate and includes adjustable parameters that allow the user to adapt to different application requirements. Our probabilistic framework to estimate network-wide probabilistic available bandwidth is based on packet trains, Bayesian inference, factor graphs and active sampling. We deploy our tool on the PlanetLab network and our results show that we can obtain accurate estimates with a much smaller measurement overhead compared to existing approaches.Comment: Submitted to Computer Network

    MatSWMM - An open-source toolbox for designing real-time control of urban drainage systems

    Get PDF
    This manuscript describes the MatSWMM toolbox, an open-source Matlab, Python, and LabVIEW-based software package for the analysis and design of real-time control (RTC) strategies in urban drainage systems (UDS). MatSWMM includes control-oriented models of UDS, and the storm water management model (SWMM) of the US Environmental Protection Agency (EPA), as well as systematic-system edition functionalities. Furthermore, MatSWMM is also provided with a population-dynamics-based controller for UDS with three of the fundamental dynamics, i.e., the Smith, projection, and replicator dynamics. The simulation algorithm, and a detailed description of the features of MatSWMM are presented in this manuscript in order to illustrate the capabilities that the tool has for educational and research purposes.Peer ReviewedPostprint (author's final draft
    • …
    corecore