440 research outputs found

    Inferring Species Trees from Incongruent Multi-Copy Gene Trees Using the Robinson-Foulds Distance

    Get PDF
    We present a new method for inferring species trees from multi-copy gene trees. Our method is based on a generalization of the Robinson-Foulds (RF) distance to multi-labeled trees (mul-trees), i.e., gene trees in which multiple leaves can have the same label. Unlike most previous phylogenetic methods using gene trees, this method does not assume that gene tree incongruence is caused by a single, specific biological process, such as gene duplication and loss, deep coalescence, or lateral gene transfer. We prove that it is NP-hard to compute the RF distance between two mul-trees, but it is easy to calculate the generalized RF distance between a mul-tree and a singly-labeled tree. Motivated by this observation, we formulate the RF supertree problem for mul-trees (MulRF), which takes a collection of mul-trees and constructs a species tree that minimizes the total RF distance from the input mul-trees. We present a fast heuristic algorithm for the MulRF supertree problem. Simulation experiments demonstrate that the MulRF method produces more accurate species trees than gene tree parsimony methods when incongruence is caused by gene tree error, duplications and losses, and/or lateral gene transfer. Furthermore, the MulRF heuristic runs quickly on data sets containing hundreds of trees with up to a hundred taxa.Comment: 16 pages, 11 figure

    Efficient error correction algorithms for gene tree reconciliation based on duplication, duplication and loss, and deep coalescence

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene tree - species tree reconciliation problems infer the patterns and processes of gene evolution within a species tree. Gene tree parsimony approaches seek the evolutionary scenario that implies the fewest gene duplications, duplications and losses, or deep coalescence (incomplete lineage sorting) events needed to reconcile a gene tree and a species tree. While a gene tree parsimony approach can be informative about genome evolution and phylogenetics, error in gene trees can profoundly bias the results.</p> <p>Results</p> <p>We introduce efficient algorithms that rapidly search local Subtree Prune and Regraft (SPR) or Tree Bisection and Reconnection (TBR) neighborhoods of a given gene tree to identify a topology that implies the fewest duplications, duplication and losses, or deep coalescence events. These algorithms improve on the current solutions by a factor of <it>n </it>for searching SPR neighborhoods and <it>n</it><sup>2 </sup>for searching TBR neighborhoods, where <it>n </it>is the number of taxa in the given gene tree. They provide a fast error correction protocol for ameliorating the effects of gene tree error by allowing small rearrangements in the topology to improve the reconciliation cost. We also demonstrate a simple protocol to use the gene rearrangement algorithm to improve gene tree parsimony phylogenetic analyses.</p> <p>Conclusions</p> <p>The new gene tree rearrangement algorithms provide a fast method to address gene tree error. They do not make assumptions about the underlying processes of genome evolution, and they are amenable to analyses of large-scale genomic data sets. These algorithms are also easily incorporated into gene tree parsimony phylogenetic analyses, potentially producing more credible estimates of reconciliation cost.</p

    The inference of gene trees with species trees

    Get PDF
    Molecular phylogeny has focused mainly on improving models for the reconstruction of gene trees based on sequence alignments. Yet, most phylogeneticists seek to reveal the history of species. Although the histories of genes and species are tightly linked, they are seldom identical, because genes duplicate, are lost or horizontally transferred, and because alleles can co-exist in populations for periods that may span several speciation events. Building models describing the relationship between gene and species trees can thus improve the reconstruction of gene trees when a species tree is known, and vice-versa. Several approaches have been proposed to solve the problem in one direction or the other, but in general neither gene trees nor species trees are known. Only a few studies have attempted to jointly infer gene trees and species trees. In this article we review the various models that have been used to describe the relationship between gene trees and species trees. These models account for gene duplication and loss, transfer or incomplete lineage sorting. Some of them consider several types of events together, but none exists currently that considers the full repertoire of processes that generate gene trees along the species tree. Simulations as well as empirical studies on genomic data show that combining gene tree-species tree models with models of sequence evolution improves gene tree reconstruction. In turn, these better gene trees provide a better basis for studying genome evolution or reconstructing ancestral chromosomes and ancestral gene sequences. We predict that gene tree-species tree methods that can deal with genomic data sets will be instrumental to advancing our understanding of genomic evolution.Comment: Review article in relation to the "Mathematical and Computational Evolutionary Biology" conference, Montpellier, 201

    iGTP: A software package for large-scale gene tree parsimony analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ever-increasing wealth of genomic sequence information provides an unprecedented opportunity for large-scale phylogenetic analysis. However, species phylogeny inference is obfuscated by incongruence among gene trees due to evolutionary events such as gene duplication and loss, incomplete lineage sorting (deep coalescence), and horizontal gene transfer. Gene tree parsimony (GTP) addresses this issue by seeking a species tree that requires the minimum number of evolutionary events to reconcile a given set of incongruent gene trees. Despite its promise, the use of gene tree parsimony has been limited by the fact that existing software is either not fast enough to tackle large data sets or is restricted in the range of evolutionary events it can handle.</p> <p>Results</p> <p>We introduce iGTP, a platform-independent software program that implements state-of-the-art algorithms that greatly speed up species tree inference under the duplication, duplication-loss, and deep coalescence reconciliation costs. iGTP significantly extends and improves the functionality and performance of existing gene tree parsimony software and offers advanced features such as building effective initial trees using stepwise leaf addition and the ability to have unrooted gene trees in the input. Moreover, iGTP provides a user-friendly graphical interface with integrated tree visualization software to facilitate analysis of the results.</p> <p>Conclusions</p> <p>iGTP enables, for the first time, gene tree parsimony analyses of thousands of genes from hundreds of taxa using the duplication, duplication-loss, and deep coalescence reconciliation costs, all from within a convenient graphical user interface.</p

    Phylogeny reconciliation under gene tree parsimony

    Get PDF
    The growing genomic and phylogenetic data sets represent a unique opportunity to analytically and computationally study the relationship among diversifying species. Unfortunately, such data often result in contradictory gene phylogenies due to common yet unobserved evolutionary events, e.g., gene duplication or deep coalescence. Gene tree parsimony (GTP) methods address such issue by reconciling gene phylogenies into one consistent species evolutionary history as well as identifying the underlying events. In this study, we solve not only the GTP problem but also propose a new method to select gene trees in order to assist biologists in gaining insight from phylogenetic analysis. First, we introduce exact solutions for the intrinsically complex GTP problem. Exact solutions for NP-hard problems, like GTP, have a long and extensive history of improvements for classic problems such as traveling salesman and knapsack. Our solutions presented here are designed via integer linear programming (ILP) and dynamic programming (DP), which are techniques widely used in solving problems of similar complexity. We also demonstrate the effectiveness of our solutions through simulation analysis and empirical datasets. To ensure input data coherence for GTP analysis, as a method to strengthen species represented in a gene tree, we introduce the quasi-biclique (QBC) approach to analyze and condense input datasets. In order to take advantage of emerging techniques that further describe the sequence-host and gene-taxon relations, quasi-bicliques are optimized via weighted edge connectivities and distribution of missing information. Our study showed these QBC mining problems are NP-hard. We describe an ILP formulation that is capable of finding optimal QBCs in an effort to support GTP analysis. We also investigate the applicability of QBC to other applications such as mining genetic interaction networks to encouraging results

    The inference of gene trees with species trees.

    Get PDF
    This article reviews the various models that have been used to describe the relationships between gene trees and species trees. Molecular phylogeny has focused mainly on improving models for the reconstruction of gene trees based on sequence alignments. Yet, most phylogeneticists seek to reveal the history of species. Although the histories of genes and species are tightly linked, they are seldom identical, because genes duplicate, are lost or horizontally transferred, and because alleles can coexist in populations for periods that may span several speciation events. Building models describing the relationship between gene and species trees can thus improve the reconstruction of gene trees when a species tree is known, and vice versa. Several approaches have been proposed to solve the problem in one direction or the other, but in general neither gene trees nor species trees are known. Only a few studies have attempted to jointly infer gene trees and species trees. These models account for gene duplication and loss, transfer or incomplete lineage sorting. Some of them consider several types of events together, but none exists currently that considers the full repertoire of processes that generate gene trees along the species tree. Simulations as well as empirical studies on genomic data show that combining gene tree-species tree models with models of sequence evolution improves gene tree reconstruction. In turn, these better gene trees provide a more reliable basis for studying genome evolution or reconstructing ancestral chromosomes and ancestral gene sequences. We predict that gene tree-species tree methods that can deal with genomic data sets will be instrumental to advancing our understanding of genomic evolution

    The study of plant genome evolution by means of phylogenomics

    Get PDF
    • …
    corecore