33,681 research outputs found

    Microlensing masses via photon bunching

    Full text link
    In microlensing of a Galactic star by a brown dwarf or other compact object, the amplified image really consists of two unresolved images with slightly different light-travel times. The difference (of order a microsecond) is GM/c^3 times a dimensionless factor depending on the total magnification. Since magnification is well-measured in microlensing events, a single time-delay measurement would provide the mass of the lens, without degeneracies. The challenge is to find an observable that varies on sub-microsecond time scales. This paper notes that the narrow-band intensity of the unresolved image pair will show photon bunching (the Hanbury Brown and Twiss effect), and argues that the lensed intensity will have an auto-correlation peak at the lensing time delay. The ultrafast photon-counting technology needed for this type of measurement exists, but the photon numbers required to give sufficient signal-to-noise appear infeasible at present. Preliminary estimates suggest time-delayed photon bunching may be measurable for lensed early-type main-sequence stars at 10 kpc, with the help of 30 m-class telescopes.Comment: To appear in MNRA

    A Backend Framework for the Efficient Management of Power System Measurements

    Get PDF
    Increased adoption and deployment of phasor measurement units (PMU) has provided valuable fine-grained data over the grid. Analysis over these data can provide insight into the health of the grid, thereby improving control over operations. Realizing this data-driven control, however, requires validating, processing and storing massive amounts of PMU data. This paper describes a PMU data management system that supports input from multiple PMU data streams, features an event-detection algorithm, and provides an efficient method for retrieving archival data. The event-detection algorithm rapidly correlates multiple PMU data streams, providing details on events occurring within the power system. The event-detection algorithm feeds into a visualization component, allowing operators to recognize events as they occur. The indexing and data retrieval mechanism facilitates fast access to archived PMU data. Using this method, we achieved over 30x speedup for queries with high selectivity. With the development of these two components, we have developed a system that allows efficient analysis of multiple time-aligned PMU data streams.Comment: Published in Electric Power Systems Research (2016), not available ye

    Amplification and stability of magnetic fields and dynamo effect in young A stars

    Full text link
    This study is concerned with the early evolution of magnetic fields and differential rotation of intermediate-mass stars which may evolve into Ap stars. We report on simulations of the interplay of differential rotation and magnetic fields, the stability limits and non-linear evolution of such configurations, and the prospects of dynamo action from the unstable cases. The axisymmetric problem delivers a balance between field amplification and back-reaction of the magnetic field on the differential rotation. The non-axisymmetric case involves also the Tayler instability of the amplified toroidal fields. We consider limits for field amplification and apply these to young A stars. Apart from its application to Ap stars, the instability is scrutinized for the fundamental possibility of a dynamo. We are not looking for a dynamo as an explanation for the Ap star phenomenon. The kinetic helicity is concentrated near the tangent cylinder of the inner sphere of the computational domain and is negative in the northern hemisphere. This appears to be a ubiquitous effect not special to the Tayler instability. The latter is actually connected with a positive current helicity in the bulk of the spherical shell giving rise to a small, but non-vanishing alpha-effect in non-linear evolution of the instability.Comment: 13 pages, 14 figures, accepted by Mon. Not. R. Astro

    Development of Threshold Levels and a Climate-Sensitivity Model of the Hydrological Regime of the High-Altitude Catchment of the Western Himalayas, Pakistan

    Get PDF
    Water shortages in Pakistan are among the most severe in the world, and its water resources are decreasing significantly due to the prevailing hydro-meteorological conditions. We assessed variations in meteorological and hydrological variables using innovative trend analysis (ITA) and traditional trend analysis methods at a practical significance level, which is also of practical interest. We developed threshold levels of hydrological variables and developed a non-parametric climate-sensitivity model of the high-altitude catchment of the western Himalayas. The runoff of Zone I decreased, while the temperature increased and the precipitation increased significantly. In Zone II, the runoff and temperature increased but the precipitation decreased. A two-dimensional visualization of the Pardé coefficient showed extreme drought events, and indicated greater sensitivity of the hydrological regime to temperature than to precipitation. The threshold levels of runoff for Zones I and II were 320 and 363 mm using the Q80 fixed method, while the mean runoff amounts were estimated to be 79.95 and 55.61 mm, respectively. The transient threshold levels varied by month, and the duration of droughts in Zones I and II ranged from 26.39 to 78.98 days. The sensitivity of the hydrological regime was estimated based on a modified climate-elasticity model (εp = 0.11–0.23, εt = −0.04–2.39) for Zones I and II, respectively. These results highlight the sensitivity of the hydrological regime to temperature, which influences the melting process. However, it is important to establish thresholds for hydrological variables and understand the climate sensitivity of the hydrological regime of the entire basin, so that policy makers and water managers can make sustainable water-resource-management decisions for this region

    A Hierarchal Planning Framework for AUV Mission Management in a Spatio-Temporal Varying Ocean

    Full text link
    The purpose of this paper is to provide a hierarchical dynamic mission planning framework for a single autonomous underwater vehicle (AUV) to accomplish task-assign process in a limited time interval while operating in an uncertain undersea environment, where spatio-temporal variability of the operating field is taken into account. To this end, a high level reactive mission planner and a low level motion planning system are constructed. The high level system is responsible for task priority assignment and guiding the vehicle toward a target of interest considering on-time termination of the mission. The lower layer is in charge of generating optimal trajectories based on sequence of tasks and dynamicity of operating terrain. The mission planner is able to reactively re-arrange the tasks based on mission/terrain updates while the low level planner is capable of coping unexpected changes of the terrain by correcting the old path and re-generating a new trajectory. As a result, the vehicle is able to undertake the maximum number of tasks with certain degree of maneuverability having situational awareness of the operating field. The computational engine of the mentioned framework is based on the biogeography based optimization (BBO) algorithm that is capable of providing efficient solutions. To evaluate the performance of the proposed framework, firstly, a realistic model of undersea environment is provided based on realistic map data, and then several scenarios, treated as real experiments, are designed through the simulation study. Additionally, to show the robustness and reliability of the framework, Monte-Carlo simulation is carried out and statistical analysis is performed. The results of simulations indicate the significant potential of the two-level hierarchical mission planning system in mission success and its applicability for real-time implementation
    • …
    corecore