2,610 research outputs found

    Efficient forward propagation of time-sequences in convolutional neural networks using Deep Shifting

    Get PDF
    When a Convolutional Neural Network is used for on-the-fly evaluation of continuously updating time-sequences, many redundant convolution operations are performed. We propose the method of Deep Shifting, which remembers previously calculated results of convolution operations in order to minimize the number of calculations. The reduction in complexity is at least a constant and in the best case quadratic. We demonstrate that this method does indeed save significant computation time in a practical implementation, especially when the networks receives a large number of time-frames

    Efficient forward propagation of time-sequences in convolutional neural networks using Deep Shifting

    Get PDF
    When a Convolutional Neural Network is used for on-the-fly evaluation of continuously updating time-sequences, many redundant convolution operations are performed. We propose the method of Deep Shifting, which remembers previously calculated results of convolution operations in order to minimize the number of calculations. The reduction in complexity is at least a constant and in the best case quadratic. We demonstrate that this method does indeed save significant computation time in a practical implementation, especially when the networks receives a large number of time-frames

    Bio-Inspired Multi-Layer Spiking Neural Network Extracts Discriminative Features from Speech Signals

    Full text link
    Spiking neural networks (SNNs) enable power-efficient implementations due to their sparse, spike-based coding scheme. This paper develops a bio-inspired SNN that uses unsupervised learning to extract discriminative features from speech signals, which can subsequently be used in a classifier. The architecture consists of a spiking convolutional/pooling layer followed by a fully connected spiking layer for feature discovery. The convolutional layer of leaky, integrate-and-fire (LIF) neurons represents primary acoustic features. The fully connected layer is equipped with a probabilistic spike-timing-dependent plasticity learning rule. This layer represents the discriminative features through probabilistic, LIF neurons. To assess the discriminative power of the learned features, they are used in a hidden Markov model (HMM) for spoken digit recognition. The experimental results show performance above 96% that compares favorably with popular statistical feature extraction methods. Our results provide a novel demonstration of unsupervised feature acquisition in an SNN

    ReConvNet: Video Object Segmentation with Spatio-Temporal Features Modulation

    Full text link
    We introduce ReConvNet, a recurrent convolutional architecture for semi-supervised video object segmentation that is able to fast adapt its features to focus on any specific object of interest at inference time. Generalization to new objects never observed during training is known to be a hard task for supervised approaches that would need to be retrained. To tackle this problem, we propose a more efficient solution that learns spatio-temporal features self-adapting to the object of interest via conditional affine transformations. This approach is simple, can be trained end-to-end and does not necessarily require extra training steps at inference time. Our method shows competitive results on DAVIS2016 with respect to state-of-the art approaches that use online fine-tuning, and outperforms them on DAVIS2017. ReConvNet shows also promising results on the DAVIS-Challenge 2018 winning the 1010-th position.Comment: CVPR Workshop - DAVIS Challenge 201
    • …
    corecore