176 research outputs found

    Comparison of CELP speech coder with a wavelet method

    Get PDF
    This thesis compares the speech quality of Code Excited Linear Predictor (CELP, Federal Standard 1016) speech coder with a new wavelet method to compress speech. The performances of both are compared by performing subjective listening tests. The test signals used are clean signals (i.e. with no background noise), speech signals with room noise and speech signals with artificial noise added. Results indicate that for clean signals and signals with predominantly voiced components the CELP standard performs better than the wavelet method but for signals with room noise the wavelet method performs much better than the CELP. For signals with artificial noise added, the results are mixed depending on the level of artificial noise added with CELP performing better for low level noise added signals and the wavelet method performing better for higher noise levels

    An investigation into glottal waveform based speech coding

    Get PDF
    Coding of voiced speech by extraction of the glottal waveform has shown promise in improving the efficiency of speech coding systems. This thesis describes an investigation into the performance of such a system. The effect of reverberation on the radiation impedance at the lips is shown to be negligible under normal conditions. Also, the accuracy of the Image Method for adding artificial reverberation to anechoic speech recordings is established. A new algorithm, Pre-emphasised Maximum Likelihood Epoch Detection (PMLED), for Glottal Closure Instant detection is proposed. The algorithm is tested on natural speech and is shown to be both accurate and robust. Two techniques for giottai waveform estimation, Closed Phase Inverse Filtering (CPIF) and Iterative Adaptive Inverse Filtering (IAIF), are compared. In tandem with an LF model fitting procedure, both techniques display a high degree of accuracy However, IAIF is found to be slightly more robust. Based on these results, a Glottal Excited Linear Predictive (GELP) coding system for voiced speech is proposed and tested. Using a differential LF parameter quantisation scheme, the system achieves speech quality similar to that of U S Federal Standard 1016 CELP at a lower mean bit rate while incurring no extra delay

    Novel Pitch Detection Algorithm With Application to Speech Coding

    Get PDF
    This thesis introduces a novel method for accurate pitch detection and speech segmentation, named Multi-feature, Autocorrelation (ACR) and Wavelet Technique (MAWT). MAWT uses feature extraction, and ACR applied on Linear Predictive Coding (LPC) residuals, with a wavelet-based refinement step. MAWT opens the way for a unique approach to modeling: although speech is divided into segments, the success of voicing decisions is not crucial. Experiments demonstrate the superiority of MAWT in pitch period detection accuracy over existing methods, and illustrate its advantages for speech segmentation. These advantages are more pronounced for gain-varying and transitional speech, and under noisy conditions

    Proceedings of the Second International Mobile Satellite Conference (IMSC 1990)

    Get PDF
    Presented here are the proceedings of the Second International Mobile Satellite Conference (IMSC), held June 17-20, 1990 in Ottawa, Canada. Topics covered include future mobile satellite communications concepts, aeronautical applications, modulation and coding, propagation and experimental systems, mobile terminal equipment, network architecture and control, regulatory and policy considerations, vehicle antennas, and speech compression

    Non-intrusive identification of speech codecs in digital audio signals

    Get PDF
    Speech compression has become an integral component in all modern telecommunications networks. Numerous codecs have been developed and deployed for efficiently transmitting voice signals while maintaining high perceptual quality. Because of the diversity of speech codecs used by different carriers and networks, the ability to distinguish between different codecs lends itself to a wide variety of practical applications, including determining call provenance, enhancing network diagnostic metrics, and improving automated speaker recognition. However, few research efforts have attempted to provide a methodology for identifying amongst speech codecs in an audio signal. In this research, we demonstrate a novel approach for accurately determining the presence of several contemporary speech codecs in a non-intrusive manner. The methodology developed in this research demonstrates techniques for analyzing an audio signal such that the subtle noise components introduced by the codec processing are accentuated while most of the original speech content is eliminated. Using these techniques, an audio signal may be profiled to gather a set of values that effectively characterize the codec present in the signal. This procedure is first applied to a large data set of audio signals from known codecs to develop a set of trained profiles. Thereafter, signals from unknown codecs may be similarly profiled, and the profiles compared to each of the known training profiles in order to decide which codec is the best match with the unknown signal. Overall, the proposed strategy generates extremely favorable results, with codecs being identified correctly in nearly 95% of all test signals. In addition, the profiling process is shown to require a very short analysis length of less than 4 seconds of audio to achieve these results. Both the identification rate and the small analysis window represent dramatic improvements over previous efforts in speech codec identification

    Structure-Constrained Basis Pursuit for Compressively Sensing Speech

    Get PDF
    Compressed Sensing (CS) exploits the sparsity of many signals to enable sampling below the Nyquist rate. If the original signal is sufficiently sparse, the Basis Pursuit (BP) algorithm will perfectly reconstruct the original signal. Unfortunately many signals that intuitively appear sparse do not meet the threshold for sufficient sparsity . These signals require so many CS samples for accurate reconstruction that the advantages of CS disappear. This is because Basis Pursuit/Basis Pursuit Denoising only models sparsity. We developed a Structure-Constrained Basis Pursuit that models the structure of somewhat sparse signals as upper and lower bound constraints on the Basis Pursuit Denoising solution. We applied it to speech, which seems sparse but does not compress well with CS, and gained improved quality over Basis Pursuit Denoising. When a single parameter (i.e. the phone) is encoded, Normalized Mean Squared Error (NMSE) decreases by between 16.2% and 1.00% when sampling with CS between 1/10 and 1/2 the Nyquist rate, respectively. When bounds are coded as a sum of Gaussians, NMSE decreases between 28.5% and 21.6% in the same range. SCBP can be applied to any somewhat sparse signal with a predictable structure to enable improved reconstruction quality with the same number of samples

    Comparison of Wideband Earpiece Integrations in Mobile Phone

    Get PDF
    Perinteisesti puhelinverkoissa välitettävä puhe on ollut kapeakaistaista, kaistan ollessa 300 - 3400 Hz. Voidaan kuitenkin olettaa, että laajakaistaiset puhepalvelut tulevat saamaan markkinoilla enemmän jalansijaa tulevina vuosina. Tässä lopputyössä esitellään puheenkoodauksen perusteet laajakaistaisen adaptiivisen moninopeuspuhekoodekin (AMR-WB) kanssa. Laajakaistainen puhekoodekki laajentaa puhekaistan 50-7000 Hz käyttäen 16 kHz näytetaajuutta. Käytännössä laajempi kaista tarkoittaa parannuksia puheen ymmärrettävyyteen ja tekee siitä luonnollisemman ja mukavamman kuuloista. Tämän lopputyön päätavoite on vertailla kahden eri laajakaistaisen matkapuhelinkuulokkeen integrointia. Kysymys kuuluu, kuinka paljon käyttäjä hyötyy isommasta kuulokkeesta matkapuhelimessa? Kuulokkeiden suorituskyvyn selvittämiseksi niille tehtiin objektiivisia mittauksia vapaakentässä. Mittauksia tehtiin myös puhelimelle pää- ja torsosimulaattorissa (HATS) johdottamalla kuuloke suoraan vahvistimelle, sekä lisäksi puhelun ollessa aktiivisena GSM ja WCDMA verkoissa. Objektiiviset mittaukset osoittivat kahden eri integroinnin väliset erot kuulokkeiden taajuusvasteessa ja särössä erityisesti matalilla taajuuksilla. Lopuksi tehtiin kuuntelukoe tarkoituksena selvittää erottaako loppukäyttäjä pienemmän ja isomman kuulokkeen välistä eroa käyttäen kapeakaistaisia ja laajakaistaisia puhelinääninäytteitä. Kuuntelukokeen tuloksien pohjalta voidaan sanoa, että käyttäjä erottaa kahden eri integroinnin erot ja miespuhuja hyötyy naispuhujaa enemmän isommasta kuulokkeesta laajakaistaisella puhekoodekilla.The speech in telecommunication networks has been traditionally narrowband ranging from 300 Hz to 3400 Hz. It can be expected that wideband speech call services will increase their foothold in the markets during the coming years. In this thesis speech coding basics with adaptive multirate wideband (AMR-WB) are introduced. The wideband codec widens the speech band to new range from 50 Hz to 7000 Hz using 16 kHz sampling frequency. In practice the wider band means improvements to speech intelligibility and makes it more natural and comfortable to listen to. The main focus of this thesis work is to compare two different wideband earpiece integrations. The question is how much the end-user will benefit from using a larger earpiece in a mobile phone? To find out speaker performance, objective measurements in free field were done for the earpiece modules. Measurements were performed also for the phone on head and torso simulator (HATS) by wiring the earpieces directly to a power amplifier and with over the air on GSM and WCDMA networks. The results of objective measurements showed differences between the earpiece integrations especially on low frequencies in frequency response and distortion. Finally the subjective listening test is done for comparison to see if the end-user notices the difference between smaller and larger earpiece integrations using narrowband and wideband speech samples. Based on these subjective test results it can be said that the user can differentiate between two different integrations and that a male speaker benefits more from a larger earpiece than a female speaker
    corecore