3,340 research outputs found

    Efficient enumeration of graph orientations with sources

    Get PDF
    International audienceAn orientation of an undirected graph is obtained by assigning a direction to each of its edges. It is called cyclic when a directed cycle appears, and acyclic otherwise. We study efficient algorithms for enumerating the orientations of an undirected graph. To get the full picture, we consider both the cases of acyclic and cyclic orientations, under some rules specifying which nodes are the sources (i.e. their incident edges are all directed outwards). Our enumeration algorithms use linear space and provide new bounds for the delay, which is the maximum elapsed time between the output of any two consecutively listed solutions. We obtain a delay of O(m) for acyclic orientations and ˜Oand˜ and˜O(m) for cyclic ones. When just a single source is specified, these delays become O(m · n) and O(m · h + h 3), respectively, where h is the girth of the graph without the given source. When multiple sources are specified, the delays are the same as in the single source case.

    Simplicial and Cellular Trees

    Get PDF
    Much information about a graph can be obtained by studying its spanning trees. On the other hand, a graph can be regarded as a 1-dimensional cell complex, raising the question of developing a theory of trees in higher dimension. As observed first by Bolker, Kalai and Adin, and more recently by numerous authors, the fundamental topological properties of a tree --- namely acyclicity and connectedness --- can be generalized to arbitrary dimension as the vanishing of certain cellular homology groups. This point of view is consistent with the matroid-theoretic approach to graphs, and yields higher-dimensional analogues of classical enumerative results including Cayley's formula and the matrix-tree theorem. A subtlety of the higher-dimensional case is that enumeration must account for the possibility of torsion homology in trees, which is always trivial for graphs. Cellular trees are the starting point for further high-dimensional extensions of concepts from algebraic graph theory including the critical group, cut and flow spaces, and discrete dynamical systems such as the abelian sandpile model.Comment: 39 pages (including 5-page bibliography); 5 figures. Chapter for forthcoming IMA volume "Recent Trends in Combinatorics

    Enumerating kk-arc-connected orientations

    Get PDF
    12 pagesWe study the problem of enumerating the kk-arc-connected orientations of a graph GG, i.e., generating each exactly once. A first algorithm using submodular flow optimization is easy to state, but intricate to implement. In a second approach we present a simple algorithm with delay O(knm2)O(knm^2) and amortized time O(m2)O(m^2), which improves over the analysis of the submodular flow algorithm. As ingredients, we obtain enumeration algorithms for the α\alpha-orientations of a graph GG in delay O(m2)O(m^2) and for the outdegree sequences attained by kk-arc-connected orientations of GG in delay O(knm2)O(knm^2)

    Transversal structures on triangulations: a combinatorial study and straight-line drawings

    Get PDF
    This article focuses on a combinatorial structure specific to triangulated plane graphs with quadrangular outer face and no separating triangle, which are called irreducible triangulations. The structure has been introduced by Xin He under the name of regular edge-labelling and consists of two bipolar orientations that are transversal. For this reason, the terminology used here is that of transversal structures. The main results obtained in the article are a bijection between irreducible triangulations and ternary trees, and a straight-line drawing algorithm for irreducible triangulations. For a random irreducible triangulation with nn vertices, the grid size of the drawing is asymptotically with high probability 11n/27×11n/2711n/27\times 11n/27 up to an additive error of \cO(\sqrt{n}). In contrast, the best previously known algorithm for these triangulations only guarantees a grid size (n/21)×n/2(\lceil n/2\rceil -1)\times \lfloor n/2\rfloor.Comment: 42 pages, the second version is shorter, focusing on the bijection (with application to counting) and on the graph drawing algorithm. The title has been slightly change

    Generic method for bijections between blossoming trees and planar maps

    Full text link
    This article presents a unified bijective scheme between planar maps and blossoming trees, where a blossoming tree is defined as a spanning tree of the map decorated with some dangling half-edges that enable to reconstruct its faces. Our method generalizes a previous construction of Bernardi by loosening its conditions of applications so as to include annular maps, that is maps embedded in the plane with a root face different from the outer face. The bijective construction presented here relies deeply on the theory of \alpha-orientations introduced by Felsner, and in particular on the existence of minimal and accessible orientations. Since most of the families of maps can be characterized by such orientations, our generic bijective method is proved to capture as special cases all previously known bijections involving blossoming trees: for example Eulerian maps, m-Eulerian maps, non separable maps and simple triangulations and quadrangulations of a k-gon. Moreover, it also permits to obtain new bijective constructions for bipolar orientations and d-angulations of girth d of a k-gon. As for applications, each specialization of the construction translates into enumerative by-products, either via a closed formula or via a recursive computational scheme. Besides, for every family of maps described in the paper, the construction can be implemented in linear time. It yields thus an effective way to encode and generate planar maps. In a recent work, Bernardi and Fusy introduced another unified bijective scheme, we adopt here a different strategy which allows us to capture different bijections. These two approaches should be seen as two complementary ways of unifying bijections between planar maps and decorated trees.Comment: 45 pages, comments welcom
    corecore