23 research outputs found

    Low complexity encoding algorithm of RS-based QC-LDPC codes

    Full text link

    Quantum stabilizer codes and beyond

    Get PDF
    The importance of quantum error correction in paving the way to build a practical quantum computer is no longer in doubt. This dissertation makes a threefold contribution to the mathematical theory of quantum error-correcting codes. Firstly, it extends the framework of an important class of quantum codes -- nonbinary stabilizer codes. It clarifies the connections of stabilizer codes to classical codes over quadratic extension fields, provides many new constructions of quantum codes, and develops further the theory of optimal quantum codes and punctured quantum codes. Secondly, it contributes to the theory of operator quantum error correcting codes also called as subsystem codes. These codes are expected to have efficient error recovery schemes than stabilizer codes. This dissertation develops a framework for study and analysis of subsystem codes using character theoretic methods. In particular, this work establishes a close link between subsystem codes and classical codes showing that the subsystem codes can be constructed from arbitrary classical codes. Thirdly, it seeks to exploit the knowledge of noise to design efficient quantum codes and considers more realistic channels than the commonly studied depolarizing channel. It gives systematic constructions of asymmetric quantum stabilizer codes that exploit the asymmetry of errors in certain quantum channels.Comment: Ph.D. Dissertation, Texas A&M University, 200

    Signal optimization for Galileo evolution

    Get PDF
    Global Navigation Satellite System (GNSS) are present in our daily lives. Moreover, new users areemerging with further operation needs involving a constant evolution of the current navigationsystems. In the current framework of Galileo (GNSS European system) and especially within theGalileo E1 Open Service (OS), adding a new acquisition aiding signal could contribute to providehigher resilience at the acquisition phase, as well as to reduce the time to first fix (TTFF).Designing a new GNSS signal is always a trade-off between several performance figures of merit.The most relevant are the position accuracy, the sensitivity and the TTFF. However, if oneconsiders that the signal acquisition phase is the goal to design, the sensitivity and the TTFF havea higher relevance. Considering that, in this thesis it is presented the joint design of a GNSS signaland the message structure to propose a new Galileo 2nd generation signal, which provides ahigher sensitivity in the receiver and reduce the TTFF. Several aspects have been addressed inorder to design a new signal component. Firstly, the spreading modulation definition must considerthe radio frequency compatibility in order to cause acceptable level of interference inside the band.Moreover, the spreading modulation should provide good correlation properties and goodresistance against the multipath in order to enhance the receiver sensitivity and to reduce theTTFF. Secondly, the choice of the new PRN code is also crucial in order to ease the acquisitionphase. A simple model criterion based on a weighted cost function is used to evaluate the PRNcodes performance. This weighted cost function takes into account different figures of merit suchas the autocorrelation, the cross-correlation and the power spectral density. Thirdly, the design ofthe channel coding scheme is always connected with the structure of the message. A joint designbetween the message structure and the channel coding scheme can provide both, reducing theTTFF and an enhancement of the resilience of the decoded data. In this this, a new method to codesign the message structure and the channel coding scheme for the new G2G signal isproposed. This method provides the guideline to design a message structure whose the channelcoding scheme is characterized by the full diversity, the Maximum Distance Separable (MDS) andthe rate compatible properties. The channel coding is essential in order to enhance the datademodulation performance, especially in harsh environments. However, this process can be verysensitive to the correct computation of the decoder input. Significant improvements were obtainedby considering soft inputs channel decoders, through the Log Likelihood Ratio LLRs computation.However, the complete knowledge of the channel state information (CSI) was usually considered,which it is infrequently in real scenarios. In this thesis, we provide new methods to compute LLRlinear approximations, under the jamming and the block fading channels, considering somestatistical CSI. Finally, to transmit a new signal in the same carrier frequency and using the sameHigh Power Amplifier (HPA) generates constraints in the multiplexing design, since a constant orquasi constant envelope is needed in order to decrease the non-linear distortions. Moreover, themultiplexing design should provide high power efficiency to not waste the transmitted satellitepower. Considering the precedent, in this thesis, we evaluate different multiplexing methods,which search to integrate a new binary signal in the Galileo E1 band while enhancing thetransmitted power efficiency. Besides that, even if the work is focused on the Galileo E1, many ofthe concepts and methodologies can be easily extended to any GNSS signa
    corecore