175 research outputs found

    Subspace subcodes of Reed-Solomon codes

    Get PDF
    We introduce a class of nonlinear cyclic error-correcting codes, which we call subspace subcodes of Reed-Solomon (SSRS) codes. An SSRS code is a subset of a parent Reed-Solomon (RS) code consisting of the RS codewords whose components all lie in a fixed ν-dimensional vector subspace S of GF (2m). SSRS codes are constructed using properties of the Galois field GF(2m). They are not linear over the field GF(2ν), which does not come into play, but rather are Abelian group codes over S. However, they are linear over GF(2), and the symbol-wise cyclic shift of any codeword is also a codeword. Our main result is an explicit but complicated formula for the dimension of an SSRS code. It implies a simple lower bound, which gives the true value of the dimension for most, though not all, subspaces. We also prove several important duality properties. We present some numerical examples, which show, among other things, that (1) SSRS codes can have a higher dimension than comparable subfield subcodes of RS codes, so that even if GF(2ν) is a subfield of GF(2m), it may not be the best ν-dimensional subspace for constructing SSRS codes; and (2) many high-rate SSRS codes have a larger dimension than any previously known code with the same values of n, d, and q, including algebraic-geometry codes. These examples suggest that high-rate SSRS codes are promising candidates to replace Reed-Solomon codes in high-performance transmission and storage systems

    Locally Encodable and Decodable Codes for Distributed Storage Systems

    Full text link
    We consider the locality of encoding and decoding operations in distributed storage systems (DSS), and propose a new class of codes, called locally encodable and decodable codes (LEDC), that provides a higher degree of operational locality compared to currently known codes. For a given locality structure, we derive an upper bound on the global distance and demonstrate the existence of an optimal LEDC for sufficiently large field size. In addition, we also construct two families of optimal LEDC for fields with size linear in code length.Comment: 7 page

    The Dimension of Subcode-Subfields of Shortened Generalized Reed Solomon Codes

    Full text link
    Reed-Solomon (RS) codes are among the most ubiquitous codes due to their good parameters as well as efficient encoding and decoding procedures. However, RS codes suffer from having a fixed length. In many applications where the length is static, the appropriate length can be obtained by an RS code by shortening or puncturing. Generalized Reed-Solomon (GRS) codes are a generalization of RS codes, whose subfield-subcodes are extensively studied. In this paper we show that a particular class of GRS codes produces many subfield-subcodes with large dimension. An algorithm for searching through the codes is presented as well as a list of new codes obtained from this method

    Lowering qubit requirements for quantum simulations of fermionic systems

    Get PDF
    The mapping of fermionic states onto qubit states, as well as the mapping of fermionic Hamiltonian into quantum gates enables us to simulate electronic systems with a quantum computer. Benefiting the understanding of many-body systems in chemistry and physics, quantum simulation is one of the great promises of the coming age of quantum computers. One challenge in realizing simulations on near-term quantum devices is the large number of qubits required by such mappings. In this work, we develop methods that allow us to trade-off qubit requirements against the complexity of the resulting quantum circuit. We first show that any classical code used to map the state of a fermionic Fock space to qubits gives rise to a mapping of fermionic models to quantum gates. As an illustrative example, we present a mapping based on a non-linear classical error correcting code, which leads to significant qubit savings albeit at the expense of additional quantum gates. We proceed to use this framework to present a number of simpler mappings that lead to qubit savings with only a very modest increase in gate difficulty. We discuss the role of symmetries such as particle conservation, and savings that could be obtained if an experimental platform could easily realize multi-controlled gates.Comment: 11+13 pages, 5 figures, 2 tables, see ArXiv files for Mathematica code (text file) and documentation (pdf); fixed typos in this new versio
    • …
    corecore