422 research outputs found

    Graph Processing in Main-Memory Column Stores

    Get PDF
    Evermore, novel and traditional business applications leverage the advantages of a graph data model, such as the offered schema flexibility and an explicit representation of relationships between entities. As a consequence, companies are confronted with the challenge of storing, manipulating, and querying terabytes of graph data for enterprise-critical applications. Although these business applications operate on graph-structured data, they still require direct access to the relational data and typically rely on an RDBMS to keep a single source of truth and access. Existing solutions performing graph operations on business-critical data either use a combination of SQL and application logic or employ a graph data management system. For the first approach, relying solely on SQL results in poor execution performance caused by the functional mismatch between typical graph operations and the relational algebra. To the worse, graph algorithms expose a tremendous variety in structure and functionality caused by their often domain-specific implementations and therefore can be hardly integrated into a database management system other than with custom coding. Since the majority of these enterprise-critical applications exclusively run on relational DBMSs, employing a specialized system for storing and processing graph data is typically not sensible. Besides the maintenance overhead for keeping the systems in sync, combining graph and relational operations is hard to realize as it requires data transfer across system boundaries. A basic ingredient of graph queries and algorithms are traversal operations and are a fundamental component of any database management system that aims at storing, manipulating, and querying graph data. Well-established graph traversal algorithms are standalone implementations relying on optimized data structures. The integration of graph traversals as an operator into a database management system requires a tight integration into the existing database environment and a development of new components, such as a graph topology-aware optimizer and accompanying graph statistics, graph-specific secondary index structures to speedup traversals, and an accompanying graph query language. In this thesis, we introduce and describe GRAPHITE, a hybrid graph-relational data management system. GRAPHITE is a performance-oriented graph data management system as part of an RDBMS allowing to seamlessly combine processing of graph data with relational data in the same system. We propose a columnar storage representation for graph data to leverage the already existing and mature data management and query processing infrastructure of relational database management systems. At the core of GRAPHITE we propose an execution engine solely based on set operations and graph traversals. Our design is driven by the observation that different graph topologies expose different algorithmic requirements to the design of a graph traversal operator. We derive two graph traversal implementations targeting the most common graph topologies and demonstrate how graph-specific statistics can be leveraged to select the optimal physical traversal operator. To accelerate graph traversals, we devise a set of graph-specific, updateable secondary index structures to improve the performance of vertex neighborhood expansion. Finally, we introduce a domain-specific language with an intuitive programming model to extend graph traversals with custom application logic at runtime. We use the LLVM compiler framework to generate efficient code that tightly integrates the user-specified application logic with our highly optimized built-in graph traversal operators. Our experimental evaluation shows that GRAPHITE can outperform native graph management systems by several orders of magnitude while providing all the features of an RDBMS, such as transaction support, backup and recovery, security and user management, effectively providing a promising alternative to specialized graph management systems that lack many of these features and require expensive data replication and maintenance processes

    Temporal graph mining and distributed processing

    Get PDF
    Cotutela Universitat Politècnica de Catalunya i Université Libre de BruxellesWith the recent growth of social media platforms and the human desire to interact with the digital world a lot of human-human and human-device interaction data is getting generated every second. With the boom of the Internet of Things (IoT) devices, a lot of device-device interactions are also now on the rise. All these interactions are nothing but a representation of how the underlying network is connecting different entities over time. These interactions when modeled as an interaction network presents a lot of unique opportunities to uncover interesting patterns and to understand the dynamics of the network. Understanding the dynamics of the network is very important because it encapsulates the way we communicate, socialize, consume information and get influenced. To this end, in this PhD thesis, we focus on analyzing an interaction network to understand how the underlying network is being used. We define interaction network as a sequence of time-stamped interactions E over edges of a static graph G=(V, E). Interaction networks can be used to model many real-world networks for example, in a social network or a communication network, each interaction over an edge represents an interaction between two users, e.g., emailing, making a call, re-tweeting, or in case of the financial network an interaction between two accounts to represent a transaction. We analyze interaction network under two settings. In the first setting, we study interaction network under a sliding window model. We assume a node could pass information to other nodes if they are connected to them using edges present in a time window. In this model, we study how the importance or centrality of a node evolves over time. In the second setting, we put additional constraints on how information flows between nodes. We assume a node could pass information to other nodes only if there is a temporal path between them. To restrict the length of the temporal paths we consider a time window in this approach as well. We apply this model to solve the time-constrained influence maximization problem. By analyzing the interaction network data under our model we find the top-k most influential nodes. We test our model both on human-human interaction using social network data as well as on location-location interaction using location-based social network(LBSNs) data. In the same setting, we also mine temporal cyclic paths to understand the communication patterns in a network. Temporal cycles have many applications and appear naturally in communication networks where one person posts a message and after a while reacts to a thread of reactions from peers on the post. In financial networks, on the other hand, the presence of a temporal cycle could be indicative of certain types of fraud. We provide efficient algorithms for all our analysis and test their efficiency and effectiveness on real-world data. Finally, given that many of the algorithms we study have huge computational demands, we also studied distributed graph processing algorithms. An important aspect of distributed graph processing is to correctly partition the graph data between different machine. A lot of research has been done on efficient graph partitioning strategies but there is no one good partitioning strategy for all kind of graphs and algorithms. Choosing the best partitioning strategy is nontrivial and is mostly a trial and error exercise. To address this problem we provide a cost model based approach to give a better understanding of how a given partitioning strategy is performing for a given graph and algorithm.Con el reciente crecimiento de las redes sociales y el deseo humano de interactuar con el mundo digital, una gran cantidad de datos de interacción humano-a-humano o humano-a-dispositivo se generan cada segundo. Con el auge de los dispositivos IoT, las interacciones dispositivo-a-dispositivo también están en alza. Todas estas interacciones no son más que una representación de como la red subyacente conecta distintas entidades en el tiempo. Modelar estas interacciones en forma de red de interacciones presenta una gran cantidad de oportunidades únicas para descubrir patrones interesantes y entender la dinamicidad de la red. Entender la dinamicidad de la red es clave ya que encapsula la forma en la que nos comunicamos, socializamos, consumimos información y somos influenciados. Para ello, en esta tesis doctoral, nos centramos en analizar una red de interacciones para entender como la red subyacente es usada. Definimos una red de interacciones como una sequencia de interacciones grabadas en el tiempo E sobre aristas de un grafo estático G=(V, E). Las redes de interacción se pueden usar para modelar gran cantidad de aplicaciones reales, por ejemplo en una red social o de comunicaciones cada interacción sobre una arista representa una interacción entre dos usuarios (correo electrónico, llamada, retweet), o en el caso de una red financiera una interacción entre dos cuentas para representar una transacción. Analizamos las redes de interacción bajo múltiples escenarios. En el primero, estudiamos las redes de interacción bajo un modelo de ventana deslizante. Asumimos que un nodo puede mandar información a otros nodos si estan conectados utilizando aristas presentes en una ventana temporal. En este modelo, estudiamos como la importancia o centralidad de un nodo evoluciona en el tiempo. En el segundo escenario añadimos restricciones adicionales respecto como la información fluye entre nodos. Asumimos que un nodo puede mandar información a otros nodos solo si existe un camino temporal entre ellos. Para restringir la longitud de los caminos temporales también asumimos una ventana temporal. Aplicamos este modelo para resolver este problema de maximización de influencia restringido temporalmente. Analizando los datos de la red de interacción bajo nuestro modelo intentamos descubrir los k nodos más influyentes. Examinamos nuestro modelo en interacciones humano-a-humano, usando datos de redes sociales, como en ubicación-a-ubicación usando datos de redes sociales basades en localización (LBSNs). En el mismo escenario también minamos camínos cíclicos temporales para entender los patrones de comunicación en una red. Existen múltiples aplicaciones para cíclos temporales y aparecen naturalmente en redes de comunicación donde una persona envía un mensaje y después de un tiempo reacciona a una cadena de reacciones de compañeros en el mensaje. En redes financieras, por otro lado, la presencia de un ciclo temporal puede indicar ciertos tipos de fraude. Proponemos algoritmos eficientes para todos nuestros análisis y evaluamos su eficiencia y efectividad en datos reales. Finalmente, dado que muchos de los algoritmos estudiados tienen una gran demanda computacional, también estudiamos los algoritmos de procesado distribuido de grafos. Un aspecto importante de procesado distribuido de grafos es el de correctamente particionar los datos del grafo entre distintas máquinas. Gran cantidad de investigación se ha realizado en estrategias para particionar eficientemente un grafo, pero no existe un particionamento bueno para todos los tipos de grafos y algoritmos. Escoger la mejor estrategia de partición no es trivial y es mayoritariamente un ejercicio de prueba y error. Con tal de abordar este problema, proporcionamos un modelo de costes para dar un mejor entendimiento en como una estrategia de particionamiento actúa dado un grafo y un algoritmo.Postprint (published version

    Temporal graph mining and distributed processing

    Get PDF
    With the recent growth of social media platforms and the human desire to interact with the digital world a lot of human-human and human-device interaction data is getting generated every second. With the boom of the Internet of Things (IoT) devices, a lot of device-device interactions are also now on the rise. All these interactions are nothing but a representation of how the underlying network is connecting different entities over time. These interactions when modeled as an interaction network presents a lot of unique opportunities to uncover interesting patterns and to understand the dynamics of the network. Understanding the dynamics of the network is very important because it encapsulates the way we communicate, socialize, consume information and get influenced. To this end, in this PhD thesis, we focus on analyzing an interaction network to understand how the underlying network is being used. We define interaction network as a sequence of time-stamped interactions E over edges of a static graph G=(V, E). Interaction networks can be used to model many real-world networks for example, in a social network or a communication network, each interaction over an edge represents an interaction between two users, e.g., emailing, making a call, re-tweeting, or in case of the financial network an interaction between two accounts to represent a transaction. We analyze interaction network under two settings. In the first setting, we study interaction network under a sliding window model. We assume a node could pass information to other nodes if they are connected to them using edges present in a time window. In this model, we study how the importance or centrality of a node evolves over time. In the second setting, we put additional constraints on how information flows between nodes. We assume a node could pass information to other nodes only if there is a temporal path between them. To restrict the length of the temporal paths we consider a time window in this approach as well. We apply this model to solve the time-constrained influence maximization problem. By analyzing the interaction network data under our model we find the top-k most influential nodes. We test our model both on human-human interaction using social network data as well as on location-location interaction using location-based social network(LBSNs) data. In the same setting, we also mine temporal cyclic paths to understand the communication patterns in a network. Temporal cycles have many applications and appear naturally in communication networks where one person posts a message and after a while reacts to a thread of reactions from peers on the post. In financial networks, on the other hand, the presence of a temporal cycle could be indicative of certain types of fraud. We provide efficient algorithms for all our analysis and test their efficiency and effectiveness on real-world data. Finally, given that many of the algorithms we study have huge computational demands, we also studied distributed graph processing algorithms. An important aspect of distributed graph processing is to correctly partition the graph data between different machine. A lot of research has been done on efficient graph partitioning strategies but there is no one good partitioning strategy for all kind of graphs and algorithms. Choosing the best partitioning strategy is nontrivial and is mostly a trial and error exercise. To address this problem we provide a cost model based approach to give a better understanding of how a given partitioning strategy is performing for a given graph and algorithm.Con el reciente crecimiento de las redes sociales y el deseo humano de interactuar con el mundo digital, una gran cantidad de datos de interacción humano-a-humano o humano-a-dispositivo se generan cada segundo. Con el auge de los dispositivos IoT, las interacciones dispositivo-a-dispositivo también están en alza. Todas estas interacciones no son más que una representación de como la red subyacente conecta distintas entidades en el tiempo. Modelar estas interacciones en forma de red de interacciones presenta una gran cantidad de oportunidades únicas para descubrir patrones interesantes y entender la dinamicidad de la red. Entender la dinamicidad de la red es clave ya que encapsula la forma en la que nos comunicamos, socializamos, consumimos información y somos influenciados. Para ello, en esta tesis doctoral, nos centramos en analizar una red de interacciones para entender como la red subyacente es usada. Definimos una red de interacciones como una sequencia de interacciones grabadas en el tiempo E sobre aristas de un grafo estático G=(V, E). Las redes de interacción se pueden usar para modelar gran cantidad de aplicaciones reales, por ejemplo en una red social o de comunicaciones cada interacción sobre una arista representa una interacción entre dos usuarios (correo electrónico, llamada, retweet), o en el caso de una red financiera una interacción entre dos cuentas para representar una transacción. Analizamos las redes de interacción bajo múltiples escenarios. En el primero, estudiamos las redes de interacción bajo un modelo de ventana deslizante. Asumimos que un nodo puede mandar información a otros nodos si estan conectados utilizando aristas presentes en una ventana temporal. En este modelo, estudiamos como la importancia o centralidad de un nodo evoluciona en el tiempo. En el segundo escenario añadimos restricciones adicionales respecto como la información fluye entre nodos. Asumimos que un nodo puede mandar información a otros nodos solo si existe un camino temporal entre ellos. Para restringir la longitud de los caminos temporales también asumimos una ventana temporal. Aplicamos este modelo para resolver este problema de maximización de influencia restringido temporalmente. Analizando los datos de la red de interacción bajo nuestro modelo intentamos descubrir los k nodos más influyentes. Examinamos nuestro modelo en interacciones humano-a-humano, usando datos de redes sociales, como en ubicación-a-ubicación usando datos de redes sociales basades en localización (LBSNs). En el mismo escenario también minamos camínos cíclicos temporales para entender los patrones de comunicación en una red. Existen múltiples aplicaciones para cíclos temporales y aparecen naturalmente en redes de comunicación donde una persona envía un mensaje y después de un tiempo reacciona a una cadena de reacciones de compañeros en el mensaje. En redes financieras, por otro lado, la presencia de un ciclo temporal puede indicar ciertos tipos de fraude. Proponemos algoritmos eficientes para todos nuestros análisis y evaluamos su eficiencia y efectividad en datos reales. Finalmente, dado que muchos de los algoritmos estudiados tienen una gran demanda computacional, también estudiamos los algoritmos de procesado distribuido de grafos. Un aspecto importante de procesado distribuido de grafos es el de correctamente particionar los datos del grafo entre distintas máquinas. Gran cantidad de investigación se ha realizado en estrategias para particionar eficientemente un grafo, pero no existe un particionamento bueno para todos los tipos de grafos y algoritmos. Escoger la mejor estrategia de partición no es trivial y es mayoritariamente un ejercicio de prueba y error. Con tal de abordar este problema, proporcionamos un modelo de costes para dar un mejor entendimiento en como una estrategia de particionamiento actúa dado un grafo y un algoritmo

    Distributed Graph Storage And Querying System

    Get PDF
    Graph databases offer an efficient way to store and access inter-connected data. However, to query large graphs that no longer fit in memory, it becomes necessary to make multiple trips to the storage device to filter and gather data based on the query. But I/O accesses are expensive operations and immensely slow down query response time and prevent us from fully exploiting the graph specific benefits that graph databases offer. The storage models of most existing graph database systems view graphs as indivisible structures and hence do not allow a hierarchical layering of the graph. This adversely affects query performance for large graphs as there is no way to filter the graph on a higher level without actually accessing the entire information from the disk. Distributing the storage and processing is one way to extract better performance. But current distributed solutions to this problem are not entirely effective, again due to the indivisible representation of graphs adopted in the storage format. This causes unnecessary latency due to increased inter-processor communication. In this dissertation, we propose an optimized distributed graph storage system for scalable and faster querying of big graph data. We start with our unique physical storage model, in which the graph is decomposed into three different levels of abstraction, each with a different storage hierarchy. We use a hybrid storage model to store the most critical component and restrict the I/O trips to only when absolutely necessary. This lets us actively make use of multi-level filters while querying, without the need of comprehensive indexes. Our results show that our system outperforms established graph databases for several class of queries. We show that this separation also eases the difficulties in distributing graph data and go on propose a more efficient distributed model for querying general purpose graph data using the Spark framework

    Towards Exascale Scientific Metadata Management

    Full text link
    Advances in technology and computing hardware are enabling scientists from all areas of science to produce massive amounts of data using large-scale simulations or observational facilities. In this era of data deluge, effective coordination between the data production and the analysis phases hinges on the availability of metadata that describe the scientific datasets. Existing workflow engines have been capturing a limited form of metadata to provide provenance information about the identity and lineage of the data. However, much of the data produced by simulations, experiments, and analyses still need to be annotated manually in an ad hoc manner by domain scientists. Systematic and transparent acquisition of rich metadata becomes a crucial prerequisite to sustain and accelerate the pace of scientific innovation. Yet, ubiquitous and domain-agnostic metadata management infrastructure that can meet the demands of extreme-scale science is notable by its absence. To address this gap in scientific data management research and practice, we present our vision for an integrated approach that (1) automatically captures and manipulates information-rich metadata while the data is being produced or analyzed and (2) stores metadata within each dataset to permeate metadata-oblivious processes and to query metadata through established and standardized data access interfaces. We motivate the need for the proposed integrated approach using applications from plasma physics, climate modeling and neuroscience, and then discuss research challenges and possible solutions
    corecore