25 research outputs found

    Метод векторного дельта-квантування параметрів мовленнєвого сигналу

    Get PDF
    У статті запропоновано метод векторного квантування LSF-параметрів мовленнєвого сигналу з прогнозуванням подальшого значення. Основна ідея методу полягає в тому, що замість квантування дійсного вектора LSF кодується різниця між дійсним та прогнозованим значеннями. Такий підхід дозволяє зменшити динамічний діапазон вхідних величин і відповідно похибку квантування. Розроблено ітераційну процедуру побудови кодових книг для реалізації запропонованого методу. Наведено експериментальні результати апробації методу для різних швидкостей кодування мовленнєвого сигналу

    Predictive multiple-scale lattice VQ for LSF quantization

    Full text link

    Blockwise Transform Image Coding Enhancement and Edge Detection

    Get PDF
    The goal of this thesis is high quality image coding, enhancement and edge detection. A unified approach using novel fast transforms is developed to achieve all three objectives. Requirements are low bit rate, low complexity of implementation and parallel processing. The last requirement is achieved by processing the image in small blocks such that all blocks can be processed simultaneously. This is similar to biological vision. A major issue is to minimize the resulting block effects. This is done by using proper transforms and possibly an overlap-save technique. The bit rate in image coding is minimized by developing new results in optimal adaptive multistage transform coding. Newly developed fast trigonometric transforms are also utilized and compared for transform coding, image enhancement and edge detection. Both image enhancement and edge detection involve generalised bandpass filtering wit fast transforms. The algorithms have been developed with special attention to the properties of biological vision systems

    Use of principal component analysis with linear predictive features in developing a blind SNR estimation system

    Get PDF
    Signal-to-noise ratio is an important concept in electrical communications, as it is a measurable ratio between a given transmitted signal and the inherent background noise of a transmission channel. Currently signal-to-noise ratio testing is primarily performed by using an intrusive method of comparing a corrupted signal to the original signal and giving it a score based on the comparison. However, this technique is inefficient and often impossible for practical use because it requires the original signal for comparison. A speech signal\u27s characteristics and properties could be used to develop a non-intrusive method for determining SNR, or a method that does not require the presence of the original clean signal. In this thesis, several extracted features were investigated to determine whether a neural network trained with data from corrupt speech signals could accurately estimate the SNR of a speech signal. A MultiLayer Perceptron (MLP) was trained on extracted features for each decibel level from 0dB to 30dB, in an attempt to create \u27expert classifiers\u27 for each SNR level. This type of architecture would then have 31 independent classifiers operating together to accurately estimate the signal-to-noise ratio of an unknown speech signal. Principal component analysis was also implemented to reduce dimensionality and increase class discrimination. The performance of several neural network classifier structures is examined, as well as analyzing the overall results to determine the optimal feature for estimating signal-to-noise ratio of an unknown speech signal. Decision-level fusion was the final procedure which combined the outputs of several classifier systems in an effort to reduce the estimation error

    A human visual system based image coder

    Get PDF
    Over the years, society has changed considerably due to technological changes, and digital images have become part and parcel of our everyday lives. Irrespective of applications (i.e., digital camera) and services (information sharing, e.g., Youtube, archive / storage), there is the need for high image quality with high compression ratios. Hence, considerable efforts have been invested in the area of image compression. The traditional image compression systems take into account of statistical redundancies inherent in the image data. However, the development and adaptation of vision models, which take into account the properties of the human visual system (HVS), into picture coders have since shown promising results. The objective of the thesis is to propose the implementation of a vision model in two different manners in the JPEG2000 coding system: (a) a Perceptual Colour Distortion Measure (PCDM) for colour images in the encoding stage, and (b) a Perceptual Post Filtering (PPF) algorithm for colour images in the decoding stage. Both implementations are embedded into the JPEG2000 coder. The vision model here exploits the contrast sensitivity, the inter-orientation masking and intra-band masking visual properties of the HVS. Extensive calibration work has been undertaken to fine-tune the 42 model parameters of the PCDM and Just-Noticeable-Difference thresholds of the PPF for colour images. Evaluation with subjective assessments of PCDM based coder has shown perceived quality improvement over the JPEG2000 benchmark with the MSE (mean square error) and CVIS criteria. For the PPF adapted JPEG2000 decoder, performance evaluation has also shown promising results against the JPEG2000 benchmarks. Based on subjective evaluation, when both PCDM and PPF are used in the JPEG2000 coding system, the overall perceived image quality is superior to the stand-alone JPEG2000 with the PCDM

    Speech coding

    Full text link

    Applications of MATLAB in Science and Engineering

    Get PDF
    The book consists of 24 chapters illustrating a wide range of areas where MATLAB tools are applied. These areas include mathematics, physics, chemistry and chemical engineering, mechanical engineering, biological (molecular biology) and medical sciences, communication and control systems, digital signal, image and video processing, system modeling and simulation. Many interesting problems have been included throughout the book, and its contents will be beneficial for students and professionals in wide areas of interest
    corecore