313 research outputs found

    Slicing of Object-Oriented Software

    Get PDF
    Software maintenance activities generally account for more than one third of time during the software development cycle. It has been found out that certain regions of a program can cause more damage than other regions, if they contain bugs. In order to find these high-risk areas, we use slicing to obtain a static backward slice of a program. Our project deals with the implementation of different intermediate graphical representations for an input source program such as the Control Dependence Graph, the Program Dependence Graph, the Class Dependence Graph and the System Dependence Graph. Once a graphical representation of an input program is obtained, slicing is performed on the program using its System Dependence Graph and a two pass graph reachability algorithm proposed by Horwitz, to obtain a static backward slice

    Communication Efficiency in Self-stabilizing Silent Protocols

    Get PDF
    Self-stabilization is a general paradigm to provide forward recovery capabilities to distributed systems and networks. Intuitively, a protocol is self-stabilizing if it is able to recover without external intervention from any catastrophic transient failure. In this paper, our focus is to lower the communication complexity of self-stabilizing protocols \emph{below} the need of checking every neighbor forever. In more details, the contribution of the paper is threefold: (i) We provide new complexity measures for communication efficiency of self-stabilizing protocols, especially in the stabilized phase or when there are no faults, (ii) On the negative side, we show that for non-trivial problems such as coloring, maximal matching, and maximal independent set, it is impossible to get (deterministic or probabilistic) self-stabilizing solutions where every participant communicates with less than every neighbor in the stabilized phase, and (iii) On the positive side, we present protocols for coloring, maximal matching, and maximal independent set such that a fraction of the participants communicates with exactly one neighbor in the stabilized phase

    A combined representation for the maintenance of C programs

    Get PDF
    A programmer wishing to make a change to a piece of code must first gain a full understanding of the behaviours and functionality involved. This process of program comprehension is difficult and time consuming, and often hindered by the absence of useful program documentation. Where documentation is absent, static analysis techniques are often employed to gather programming level information in the form of data and control flow relationships, directly from the source code itself. Software maintenance environments are created by grouping together a number of different static analysis tools such as program sheers, call graph builders and data flow analysis tools, providing a maintainer with a selection of 'views' of the subject code. However, each analysis tool often requires its own intermediate program representation (IPR). For example, an environment comprising five tools may require five different IPRs, giving repetition of information and inefficient use of storage space. A solution to this problem is to develop a single combined representation which contains all the program relationships required to present a maintainer with each required code view. The research presented in this thesis describes the Combined C Graph (CCG), a dependence-based representation for C programs from which a maintainer is able to construct data and control dependence views, interprocedural control flow views, program slices and ripple analyses. The CCG extends earlier dependence-based program representations, introducing language features such as expressions with embedded side effects and control flows, value returning functions, pointer variables, pointer parameters, array variables and structure variables. Algorithms for the construction of the CCG are described and the feasibility of the CCG demonstrated by means of a C/Prolog based prototype implementation

    Topology Control Multi-Objective Optimisation in Wireless Sensor Networks: Connectivity-Based Range Assignment and Node Deployment

    Get PDF
    The distinguishing characteristic that sets topology control apart from other methods, whose motivation is to achieve effects of energy minimisation and an increased network capacity, is its network-wide perspective. In other words, local choices made at the node-level always have the goal in mind of achieving a certain global, network-wide property, while not excluding the possibility for consideration of more localised factors. As such, our approach is marked by being a centralised computation of the available location-based data and its reduction to a set of non-homogeneous transmitting range assignments, which elicit a certain network-wide property constituted as a whole, namely, strong connectedness and/or biconnectedness. As a means to effect, we propose a variety of GA which by design is multi-morphic, where dependent upon model parameters that can be dynamically set by the user, the algorithm, acting accordingly upon either single or multiple objective functions in response. In either case, leveraging the unique faculty of GAs for finding multiple optimal solutions in a single pass. Wherefore it is up to the designer to select the singular solution which best meets requirements. By means of simulation, we endeavour to establish its relative performance against an optimisation typifying a standard topology control technique in the literature in terms of the proportion of time the network exhibited the property of strong connectedness. As to which, an analysis of the results indicates that such is highly sensitive to factors of: the effective maximum transmitting range, node density, and mobility scenario under observation. We derive an estimate of the optimal constitution thereof taking into account the specific conditions within the domain of application in that of a WSN, thereby concluding that only GA optimising for the biconnected components in a network achieves the stated objective of a sustained connected status throughout the duration.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Advances in Functional Decomposition: Theory and Applications

    Get PDF
    Functional decomposition aims at finding efficient representations for Boolean functions. It is used in many applications, including multi-level logic synthesis, formal verification, and testing. This dissertation presents novel heuristic algorithms for functional decomposition. These algorithms take advantage of suitable representations of the Boolean functions in order to be efficient. The first two algorithms compute simple-disjoint and disjoint-support decompositions. They are based on representing the target function by a Reduced Ordered Binary Decision Diagram (BDD). Unlike other BDD-based algorithms, the presented ones can deal with larger target functions and produce more decompositions without requiring expensive manipulations of the representation, particularly BDD reordering. The third algorithm also finds disjoint-support decompositions, but it is based on a technique which integrates circuit graph analysis and BDD-based decomposition. The combination of the two approaches results in an algorithm which is more robust than a purely BDD-based one, and that improves both the quality of the results and the running time. The fourth algorithm uses circuit graph analysis to obtain non-disjoint decompositions. We show that the problem of computing non-disjoint decompositions can be reduced to the problem of computing multiple-vertex dominators. We also prove that multiple-vertex dominators can be found in polynomial time. This result is important because there is no known polynomial time algorithm for computing all non-disjoint decompositions of a Boolean function. The fifth algorithm provides an efficient means to decompose a function at the circuit graph level, by using information derived from a BDD representation. This is done without the expensive circuit re-synthesis normally associated with BDD-based decomposition approaches. Finally we present two publications that resulted from the many detours we have taken along the winding path of our research
    corecore