7,275 research outputs found

    Multiphysics processes in solid thermal energy storage

    Get PDF
    Um die zuverlässige Integration von Solarthermieanwendungen (ST), z.B. konzentrierte Solarenergie (concentrating solar power, CSP) bei steigendem Energiebedarf und trotz des fluktuierenden Charakters von ST zu ermöglichen, werden thermische Energiespeichertechnologien (TES) als attraktive Lösungen eingesetzt, um ST-basierte Systeme auf dem Energiemarkt wettbewerbsfähiger zu machen. Darüber hinaus werden Feststoff-TES-Systeme als vielversprechende Alternative zu herkömmlichen Flüssigkeitsspeicherlösungen betrachtet, um die Investitionskosten für die TES-Einheit weiter zu senken. Sowohl aus technischer als auch aus kommerzieller Sicht können sie vorteilhaft mittels der Komponentenfertigung bis hin zum kompletten modularen Aufbau ausgelegt werden, um die vorgesehene Beladungsmenge für verschiedene Leistungsbereiche von CSP-Anlagen abzudecken. Die erfolgreiche Integration von feststoffbasierten, sensiblen Wärmespeichern (SWS) in Parabolrinnen-Kraftwerken hat sich in den letzten zehn Jahren bewährt. Gegenwärtig gewinnt die TES-Technologie für niedrige Temperaturen neben Hochtemperaturanwendungen zur Stromerzeugung zunehmend an Bedeutung. Dies bietet die Möglichkeit, neue gemischte Feststoff-Flüssigkeits-Speichermaterialien zu entwickeln, um die Wärmespeicherdichte zu erhöhen, wie hier am Beispiel eines neuartigen, wassergesättigten zementartigen Materials demonstriert wird, das im Rahmen eines nationalen Projekts zur Speicherung von mit Solarkollektoren gewonnener Energie (IGLU-Projekt) entwickelt wurde. Wegen typischer Eigenschaften der Feststoffe müssen jedoch wichtige spezifische Probleme gelöst werden, um die Leistungsfähigkeit und Stabilität von festen TES-Systemen über einen langen Zeitraum zu gewährleisten. Die gegenwärtigen Bemühungen von Wissenschaft und Industrie konzentrieren sich auf thermische Aspekte als zentrales Hauptanliegen. Feststoffbasierte TES sind jedoch multiphysikalischen Prozessen unterworfen, d.h. das thermische Verhalten ist ein Produkt der gegenseitigen Wechselwirkung mehrerer beteiligter physikalischer Felder und beeinflusst selbst wiederum diese Felder. Das damit verbundene mechanische Verhalten der Wärmespeicherkomponenten hat einen großen Einfluss auf die Zuverlässigkeit und Haltbarkeit des Systems sowie die thermische Leistung, da mögliche Strukturschäden den Wärmetransport durch die TES-Struktur erheblich beeinflussen und die Integrität der Struktur selbst gefährden können. Die Motivation dieses Beitrags liegt in der Entwicklung eines innovativen feststoffbasierten TES-Moduls (IGLU TES) für das oben genannte IGLU-Projekt. Ziel dieses Beitrags ist es, die Leistungsfähigkeit und Integrität von feststoffbasierten TES mit Röhrenwärmetauschern unter multiphysikalischen Bedingungen zu untersuchen, um insbesondere die Möglichkeiten und Folgen eines Versagens durch mechanische Schädigung oder thermische Degradation zu identifizieren. Die Arbeit geht von einer verallgemeinerten thermo-hydro-mechanischen (THM) Analyse des IGLU TES aus, um einen ersten Einblick in die Kopplungseffekte zwischen den verschiedenen physikalischen Feldern und deren relative Bedeutung zu gewinnen. Kritische Bereiche in den Zonen um den Röhrenwärmetauscher werden dann anhand der sich einstellenden Spannungsfelder als kritisch identifiziert, da sie die strukturelle Integrität des Speichermoduls beeinträchtigen können, indem in diesen Zonen die Festigkeit charakterisierende oder bruchmechanische Kriterien überschritten werden. Die so ermittelten kritischen Bereiche erlauben eine vertiefte, strukturspezifische Analyse eines feststoffbasierten TES mit eingebetteten Röhrenwärmetauschern. Insbesondere wird ein analytischer Ansatz vorgeschlagen, indem geeignete Vereinfachungen auf der Grundlage der vorangegangenen numerischen Analysen vorgenommen werden, um eine robuste Analyse derjenigen materialspezifischen und geometrischen Größen durchzuführen, die den größten Einfluss auf die strukturelle Zuverlässigkeit des Speichermoduls ausüben. Die abgeleitete analytische Lösung kann zur Quantifizierung der Abhängigkeit kritischer Spannungen von mehreren Systemparametern, Materialkennwerten und Geometriegrößen herangezogen werden, um unter gewählten Gesichtspunkten eine Systemoptimierung mit großer Designflexibilität für die Speicherkonfiguration durchzuführen. Der analytische Ansatz erfordert nur minimalen Aufwand und eignet sich für frühe Designphasen. Dabei zeigte sich, dass das Risiko von Material- und Strukturversagen auch bei optimaler Auslegung nicht beliebig reduziert werden kann. Daher wird ein Phasenfeld-Ansatz zur Modellierung von Risswachstumsprozessen entwickelt, um wahrscheinliche Schädigungsmuster zu erfassen, die durch die Nichtübereinstimmung der thermischen Ausdehnungskoeffizienten der Systemkomponenten verursacht werden, und den Einfluss der resultierenden Risstopologien auf das thermische Verhalten eines festen TES-Systems zu quantifizieren. Der vorgeschlagene Phasenfeldansatz, formuliert innerhalb eines gekoppelten thermomechanischen Ansatzes, wird auf zwei repräsentative feste SWS-Konfigurationen angewendet, die sich sowohl hinsichtlich des Speichermediums als auch der Speichertemperatur unterscheiden. Innerhalb des Festkörpers wird ein Bruchvorgang beobachtet und die daraus resultierende thermische Leistungsabnahme durch eine Wärmetransportbehinderung in Abhängigkeit des eingeschlossenen flüssigen Mediums mit potentiell niedriger Wärmeleitfähigkeit untersucht, was zu erheblichen Schwankungen der Heizleistung in einem laufenden System führen kann

    A stabilized finite element formulation for monolithic thermo-hydro-mechanical simulations at finite strain

    Get PDF
    An adaptively stabilized monolithic finite element model is proposed to simulate the fully coupled thermo-hydro-mechanical behavior of porous media undergoing large deformation. We first formulate a finite-deformation thermo-hydro-mechanics field theory for non-isothermal porous media. Projection-based stabilization procedure is derived to eliminate spurious pore pressure and temperature modes due to the lack of the two-fold inf-sup condition of the equal-order finite element. To avoid volumetric locking due to the incompressibility of solid skeleton, we introduce a modified assumed deformation gradient in the formulation for non-isothermal porous solids. Finally, numerical examples are given to demonstrate the versatility and efficiency of this thermo-hydro-mechanical model

    A fully coupled numerical model of thermo-hydro-mechanical processes and fracture contact mechanics in porous media

    Get PDF
    Various phenomena in the subsurface are characterised by the interplay between deforming structures such as fractures and coupled thermal, hydraulic and mechanical processes. Simulation of subsurface dynamics can provide valuable phenomenological understanding, but requires models which faithfully represent the dynamics involved; these models therefore are themselves highly complex. This paper presents a mixed-dimensional thermo-hydro-mechanical model designed to capture the process–structure interplay using a discrete–fracture–matrix framework. It incorporates tightly coupled thermo-hydro-mechanical processes based on balance laws for momentum, mass and energy in subdomains representing the matrix and the lower-dimensional fractures and fracture intersections. The deformation of explicitly represented fractures is modelled by contact mechanics relations and a Coulomb friction law, with a novel formulation consistently integrating fracture dilation in the governing equations. The model is discretised using multi-point finite volume methods for the balance equations and a semismooth Newton scheme for the contact conditions and is implemented in the open-source fracture simulation toolbox PorePy. Finally, simulation studies demonstrate the model’s convergence, investigate process–structure coupling effects, explore different fracture dilation models and show an application of the model to stimulation and long-term cooling of a three-dimensional geothermal reservoir.publishedVersio

    Model order reduction of coupled thermo-hydro-mechanical processes in geo-environmental applications

    Get PDF
    Tesi en modalitat de cotutela: Universitat Politècnica de Catalunya i Université libre de BruxellesIn a large number of geo-environmental applications, it is essential to model coupled processes that depend on several design parameters such as material properties and geometrical features. Thermo-hydro-mechanical (THM) processes are, among others, key effects to consider in critical applications such as deep geological repository of hazardous waste. This thesis proposes novel model order reduction strategies to evaluate the thermo-hydro-mechanical response of the material, taking into account the complexities involved in the coupled processes for such applications. To include variability of some design parameters, an a-posteriori model order reduction approach with reduced basis methods is applied to solve the high-dimensional parametric THM system. The reduction is based on an offline-online stage strategy. In the offline stage, reduced subspaces are constructed by a greedy adaptive procedure and in the online stage, multi-subspace projection is performed to quickly obtain the coupled THM response at any value of the design parameter. At the core of the greedy adaptive strategy is a goal-oriented error estimator that guides the selection of optimal design parameters where snapshots are evaluated. To tackle nonlinearity in the form of elasto-plastic material behaviour, the multi-subspace reduced basis method is combined with sub-structuring by domain decomposition. The effectiveness of the model reduction strategies are demonstrated on inverse problems involving large-scale geomodels that depict the coupled response of host rocks in potential deep geological repository sites. Two types of scenarios are considered: (i) the host rock undergoing geomorphological process is investigated as glacier advances over it for a period lasting over thousands of years and (ii) the clay response of an underground research laboratory is modelled numerically to support and validate in-situ heating experiments.En un gran número de aplicaciones geoambientales, es esencial modelar procesos acoplados que dependen de varios parámetros de diseño, como las propiedades de los materiales y las características geométricas. Los procesos termohidromecánicos (THM) son, entre otros, efectos clave a considerar en aplicaciones críticas como los depósitos geológicos profundos de residuos peligrosos. Esta tesis propone novedosas estrategias de reducción de orden del modelo para evaluar la respuesta termo-hidromecánica del material, teniendo en cuenta las complejidades que implican los procesos acoplados para dichas aplicaciones. Para incluir la variabilidad de algunos parámetros de diseño, se aplica un enfoque de reducción de orden del modelo a-posteriori con métodos de base reducida para resolver el sistema paramétrico THM de alta dimensión. La reducción se basa en una estrategia de etapas offline-online. En la etapa offline, los subespacios reducidos se construyen mediante un procedimiento adaptativo codicioso y en la etapa online, se realiza una proyección multisubespacio para obtener rápidamente la respuesta THM acoplada a cualquier valor del parámetro de diseño. El núcleo de la estrategia adaptativa 'greedy' es un 'goal-oriented error estimator' a objetivos que guía la selección de los parámetros de diseño óptimos donde se evalúan las 'snapshots'. Para hacer frente a la no linealidad en forma de comportamiento elastoplástico del material, se combina el método de bases reducidas multisuperficie con 'domain decomposition sub-structuring'. La eficacia de las estrategias de reducción de modelos se demuestra en problemas inversos de problemas inversos que implican geomodelos a gran escala que representan la respuesta acoplada de las rocas anfitrionas en posibles emplazamientos de depósitos geológicos profundos. Se consideran dos tipos de escenarios: (i) se investiga la roca sometida a un proceso geomorfológico a medida que el glaciar avanza sobre ella durante un período de miles de años y (ii) se modela numéricamente la respuesta de la arcilla de un laboratorio de investigación subterráneo para apoyar y validar los experimentos de "in situ heating"Postprint (published version

    Coupled Thermo-Hydro-Mechanical and Chemical Analysis of Expansive Clay Subjected to Heating and Hydration

    Get PDF
    A fully coupled formulation combining reactive transport and an existing thermo-hydro-mechanical (THM) code is presented. Special attention has been given to phenomena likely to be encountered in clay barriers used as part of containment systems of nuclear waste. The types of processes considered include hydrolysis, complex formation, oxidation/reduction reactions, acid/base reactions, precipitation/dissolution of minerals and cation exchange. Both kinetically-controlled and equilibrium-controlled reactions have been incorporated. The total analytical concentrations (including precipitated minerals) are adopted as basic transport variables and chemical equilibrium is achieved by minimizing Gibbs Free Energy. The formulation has been incorporated in a general purpose computer code capable of performing numerical analysis of engineering problems. A validation exercise concerning a laboratory experiment involving the heating and hydration of an expansive compacted clay is described
    corecore