15,127 research outputs found

    A Krylov subspace algorithm for evaluating the phi-functions appearing in exponential integrators

    Full text link
    We develop an algorithm for computing the solution of a large system of linear ordinary differential equations (ODEs) with polynomial inhomogeneity. This is equivalent to computing the action of a certain matrix function on the vector representing the initial condition. The matrix function is a linear combination of the matrix exponential and other functions related to the exponential (the so-called phi-functions). Such computations are the major computational burden in the implementation of exponential integrators, which can solve general ODEs. Our approach is to compute the action of the matrix function by constructing a Krylov subspace using Arnoldi or Lanczos iteration and projecting the function on this subspace. This is combined with time-stepping to prevent the Krylov subspace from growing too large. The algorithm is fully adaptive: it varies both the size of the time steps and the dimension of the Krylov subspace to reach the required accuracy. We implement this algorithm in the Matlab function phipm and we give instructions on how to obtain and use this function. Various numerical experiments show that the phipm function is often significantly more efficient than the state-of-the-art.Comment: 20 pages, 3 colour figures, code available from http://www.maths.leeds.ac.uk/~jitse/software.html . v2: Various changes to improve presentation as suggested by the refere

    Fourth-order time-stepping for stiff PDEs on the sphere

    Full text link
    We present in this paper algorithms for solving stiff PDEs on the unit sphere with spectral accuracy in space and fourth-order accuracy in time. These are based on a variant of the double Fourier sphere method in coefficient space with multiplication matrices that differ from the usual ones, and implicit-explicit time-stepping schemes. Operating in coefficient space with these new matrices allows one to use a sparse direct solver, avoids the coordinate singularity and maintains smoothness at the poles, while implicit-explicit schemes circumvent severe restrictions on the time-steps due to stiffness. A comparison is made against exponential integrators and it is found that implicit-explicit schemes perform best. Implementations in MATLAB and Chebfun make it possible to compute the solution of many PDEs to high accuracy in a very convenient fashion

    Efficient approximation of functions of some large matrices by partial fraction expansions

    Full text link
    Some important applicative problems require the evaluation of functions Ψ\Psi of large and sparse and/or \emph{localized} matrices AA. Popular and interesting techniques for computing Ψ(A)\Psi(A) and Ψ(A)v\Psi(A)\mathbf{v}, where v\mathbf{v} is a vector, are based on partial fraction expansions. However, some of these techniques require solving several linear systems whose matrices differ from AA by a complex multiple of the identity matrix II for computing Ψ(A)v\Psi(A)\mathbf{v} or require inverting sequences of matrices with the same characteristics for computing Ψ(A)\Psi(A). Here we study the use and the convergence of a recent technique for generating sequences of incomplete factorizations of matrices in order to face with both these issues. The solution of the sequences of linear systems and approximate matrix inversions above can be computed efficiently provided that A−1A^{-1} shows certain decay properties. These strategies have good parallel potentialities. Our claims are confirmed by numerical tests

    Solving rank structured Sylvester and Lyapunov equations

    Full text link
    We consider the problem of efficiently solving Sylvester and Lyapunov equations of medium and large scale, in case of rank-structured data, i.e., when the coefficient matrices and the right-hand side have low-rank off-diagonal blocks. This comprises problems with banded data, recently studied by Haber and Verhaegen in "Sparse solution of the Lyapunov equation for large-scale interconnected systems", Automatica, 2016, and by Palitta and Simoncini in "Numerical methods for large-scale Lyapunov equations with symmetric banded data", SISC, 2018, which often arise in the discretization of elliptic PDEs. We show that, under suitable assumptions, the quasiseparable structure is guaranteed to be numerically present in the solution, and explicit novel estimates of the numerical rank of the off-diagonal blocks are provided. Efficient solution schemes that rely on the technology of hierarchical matrices are described, and several numerical experiments confirm the applicability and efficiency of the approaches. We develop a MATLAB toolbox that allows easy replication of the experiments and a ready-to-use interface for the solvers. The performances of the different approaches are compared, and we show that the new methods described are efficient on several classes of relevant problems

    Decay properties of spectral projectors with applications to electronic structure

    Full text link
    Motivated by applications in quantum chemistry and solid state physics, we apply general results from approximation theory and matrix analysis to the study of the decay properties of spectral projectors associated with large and sparse Hermitian matrices. Our theory leads to a rigorous proof of the exponential off-diagonal decay ("nearsightedness") for the density matrix of gapped systems at zero electronic temperature in both orthogonal and non-orthogonal representations, thus providing a firm theoretical basis for the possibility of linear scaling methods in electronic structure calculations for non-metallic systems. We further discuss the case of density matrices for metallic systems at positive electronic temperature. A few other possible applications are also discussed.Comment: 63 pages, 13 figure
    • …
    corecore