5,848 research outputs found

    A randomised primal-dual algorithm for distributed radio-interferometric imaging

    Get PDF
    Next generation radio telescopes, like the Square Kilometre Array, will acquire an unprecedented amount of data for radio astronomy. The development of fast, parallelisable or distributed algorithms for handling such large-scale data sets is of prime importance. Motivated by this, we investigate herein a convex optimisation algorithmic structure, based on primal-dual forward-backward iterations, for solving the radio interferometric imaging problem. It can encompass any convex prior of interest. It allows for the distributed processing of the measured data and introduces further flexibility by employing a probabilistic approach for the selection of the data blocks used at a given iteration. We study the reconstruction performance with respect to the data distribution and we propose the use of nonuniform probabilities for the randomised updates. Our simulations show the feasibility of the randomisation given a limited computing infrastructure as well as important computational advantages when compared to state-of-the-art algorithmic structures.Comment: 5 pages, 3 figures, Proceedings of the European Signal Processing Conference (EUSIPCO) 2016, Related journal publication available at https://arxiv.org/abs/1601.0402

    Study of fault-tolerant software technology

    Get PDF
    Presented is an overview of the current state of the art of fault-tolerant software and an analysis of quantitative techniques and models developed to assess its impact. It examines research efforts as well as experience gained from commercial application of these techniques. The paper also addresses the computer architecture and design implications on hardware, operating systems and programming languages (including Ada) of using fault-tolerant software in real-time aerospace applications. It concludes that fault-tolerant software has progressed beyond the pure research state. The paper also finds that, although not perfectly matched, newer architectural and language capabilities provide many of the notations and functions needed to effectively and efficiently implement software fault-tolerance

    A Bidirectional Soft-Switched DAB-Based Single-Stage Three-Phase AC–DC Converter for V2G Application

    Get PDF
    In vehicle-to-grid applications, the battery charger of the electric vehicle (EV) needs to have a bidirectional power flow capability. Galvanic isolation is necessary for safety. An ac-dc bidirectional power converter with high-frequency isolation results in high power density, a key requirement for an on-board charger of an EV. Dual-active-bridge (DAB) converters are preferred in medium power and high voltage isolated dc-dc converters due to high power density and better efficiency. This paper presents a DAB-based three-phase ac-dc isolated converter with a novel modulation strategy that results in: 1) single-stage power conversion with no electrolytic capacitor, improving the reliability and power density; 2) open-loop power factor correction; 3) soft-switching of all semiconductor devices; and 4) a simple linear relationship between the control variable and the transferred active power. This paper presents a detailed analysis of the proposed operation, along with simulation results and experimental verification

    Using NSPT for the Removal of Hypercubic Lattice Artifacts

    Full text link
    The treatment of hypercubic lattice artifacts is essential for the calculation of non-perturbative renormalization constants of RI-MOM schemes. It has been shown that for the RI'-MOM scheme a large part of these artifacts can be calculated and subtracted with the help of diagrammatic Lattice Perturbation Theory (LPT). Such calculations are typically restricted to 1-loop order, but one may overcome this limitation and calculate hypercubic corrections for any operator and action beyond the 1-loop order using Numerical Stochastic Perturbation Theory (NSPT). In this study, we explore the practicability of such an approach and consider, as a first test, the case of Wilson fermion bilinear operators in a quenched theory. Our results allow us to compare boosted and unboosted perturbative corrections up to the 3-loop order.Comment: 7 pages, 6 figures, talk presented at the 32nd International Symposium on Lattice Field Theory (Lattice 2014), 23-28 June 2014, New York, USA; PoS(LATTICE2014)29

    ICE: Enabling Non-Experts to Build Models Interactively for Large-Scale Lopsided Problems

    Full text link
    Quick interaction between a human teacher and a learning machine presents numerous benefits and challenges when working with web-scale data. The human teacher guides the machine towards accomplishing the task of interest. The learning machine leverages big data to find examples that maximize the training value of its interaction with the teacher. When the teacher is restricted to labeling examples selected by the machine, this problem is an instance of active learning. When the teacher can provide additional information to the machine (e.g., suggestions on what examples or predictive features should be used) as the learning task progresses, then the problem becomes one of interactive learning. To accommodate the two-way communication channel needed for efficient interactive learning, the teacher and the machine need an environment that supports an interaction language. The machine can access, process, and summarize more examples than the teacher can see in a lifetime. Based on the machine's output, the teacher can revise the definition of the task or make it more precise. Both the teacher and the machine continuously learn and benefit from the interaction. We have built a platform to (1) produce valuable and deployable models and (2) support research on both the machine learning and user interface challenges of the interactive learning problem. The platform relies on a dedicated, low-latency, distributed, in-memory architecture that allows us to construct web-scale learning machines with quick interaction speed. The purpose of this paper is to describe this architecture and demonstrate how it supports our research efforts. Preliminary results are presented as illustrations of the architecture but are not the primary focus of the paper
    corecore