1,216 research outputs found

    Efficient computation of high index Sturm-Liouville eigenvalues for problems in physics

    Full text link
    Finding the eigenvalues of a Sturm-Liouville problem can be a computationally challenging task, especially when a large set of eigenvalues is computed, or just when particularly large eigenvalues are sought. This is a consequence of the highly oscillatory behaviour of the solutions corresponding to high eigenvalues, which forces a naive integrator to take increasingly smaller steps. We will discuss some techniques that yield uniform approximation over the whole eigenvalue spectrum and can take large steps even for high eigenvalues. In particular, we will focus on methods based on coefficient approximation which replace the coefficient functions of the Sturm-Liouville problem by simpler approximations and then solve the approximating problem. The use of (modified) Magnus or Neumann integrators allows to extend the coefficient approximation idea to higher order methods

    A Finite Element Method for the Fractional Sturm-Liouville Problem

    Full text link
    In this work, we propose an efficient finite element method for solving fractional Sturm-Liouville problems involving either the Caputo or Riemann-Liouville derivative of order α∈(1,2)\alpha\in(1,2) on the unit interval (0,1)(0,1). It is based on novel variational formulations of the eigenvalue problem. Error estimates are provided for the finite element approximations of the eigenvalues. Numerical results are presented to illustrate the efficiency and accuracy of the method. The results indicate that the method can achieve a second-order convergence for both fractional derivatives, and can provide accurate approximations to multiple eigenvalues simultaneously.Comment: 30 pages, 7 figure

    Automatic computation of quantum-mechanical bound states and wavefunctions

    Get PDF
    We discuss the automatic solution of the multichannel Schr\"odinger equation. The proposed approach is based on the use of a CP method for which the step size is not restricted by the oscillations in the solution. Moreover, this CP method turns out to form a natural scheme for the integration of the Riccati differential equation which arises when introducing the (inverse) logarithmic derivative. A new Pr\"ufer type mechanism which derives all the required information from the propagation of the inverse of the log-derivative, is introduced. It improves and refines the eigenvalue shooting process and implies that the user may specify the required eigenvalue by its index

    Classical and vector sturm—liouville problems: recent advances in singular-point analysis and shooting-type algorithms

    Get PDF
    AbstractSignificant advances have been made in the last year or two in algorithms and theory for Sturm—Liouville problems (SLPs). For the classical regular or singular SLP −(p(x)u′)′ + q(x)u = λw(x)u, a < x < b, we outline the algorithmic approaches of the recent library codes and what they can now routinely achieve.For a library code, automatic treatment of singular problems is a must. New results are presented which clarify the effect of various numerical methods of handling a singular endpoint.For the vector generalization −(P(x)u′)′+Q(x)u = λW(x)u where now u is a vector function of x, and P, Q, W are matrices, and for the corresponding higher-order vector self-adjoint problem, we outline the equally impressive advances in algorithms and theory
    • …
    corecore