684 research outputs found

    I/O-Efficient Planar Range Skyline and Attrition Priority Queues

    Full text link
    In the planar range skyline reporting problem, we store a set P of n 2D points in a structure such that, given a query rectangle Q = [a_1, a_2] x [b_1, b_2], the maxima (a.k.a. skyline) of P \cap Q can be reported efficiently. The query is 3-sided if an edge of Q is grounded, giving rise to two variants: top-open (b_2 = \infty) and left-open (a_1 = -\infty) queries. All our results are in external memory under the O(n/B) space budget, for both the static and dynamic settings: * For static P, we give structures that answer top-open queries in O(log_B n + k/B), O(loglog_B U + k/B), and O(1 + k/B) I/Os when the universe is R^2, a U x U grid, and a rank space grid [O(n)]^2, respectively (where k is the number of reported points). The query complexity is optimal in all cases. * We show that the left-open case is harder, such that any linear-size structure must incur \Omega((n/B)^e + k/B) I/Os for a query. We show that this case is as difficult as the general 4-sided queries, for which we give a static structure with the optimal query cost O((n/B)^e + k/B). * We give a dynamic structure that supports top-open queries in O(log_2B^e (n/B) + k/B^1-e) I/Os, and updates in O(log_2B^e (n/B)) I/Os, for any e satisfying 0 \le e \le 1. This leads to a dynamic structure for 4-sided queries with optimal query cost O((n/B)^e + k/B), and amortized update cost O(log (n/B)). As a contribution of independent interest, we propose an I/O-efficient version of the fundamental structure priority queue with attrition (PQA). Our PQA supports FindMin, DeleteMin, and InsertAndAttrite all in O(1) worst case I/Os, and O(1/B) amortized I/Os per operation. We also add the new CatenateAndAttrite operation that catenates two PQAs in O(1) worst case and O(1/B) amortized I/Os. This operation is a non-trivial extension to the classic PQA of Sundar, even in internal memory.Comment: Appeared at PODS 2013, New York, 19 pages, 10 figures. arXiv admin note: text overlap with arXiv:1208.4511, arXiv:1207.234

    Textually Relevant Spatial Skylines

    Get PDF
    postprin

    Query Profiler Versus Cache for Skyline Computation

    Get PDF
    A skyline query is multi preference user query which generates the best objects from a multi attributed dataset. Skyline computation in an optimum time becomes a real challenge when the number of user preference are large and size of the dataset is also huge. When such a big data gets queried at large, response time optimization is possible through maintenance of the metadata about the pre-executed skyline queries. We have earlier proposed, a novel structure namely �Query Profiler� which preserves such metadata about the historical queries, raised against a dataset. Also as the dataset gets queried at large, the dimensions of user queries often overlap and queries get correlated. Such correlations in user queries and the availability of metadata about the earlier queries, combined together speed up the computation time and the optimization of the response time of the further skyline computation becomes possible. In this paper, we assert the efficacy of the Query Profiler by comparing its performance with the parallel techniques which utilize cache mechanism for optimization of the response time. We also present the experimental results which assert the efficacy of the proposed technique

    Probabilistic Skyline Queries over Uncertain Moving Objects

    Get PDF
    Data uncertainty inherently exists in a large number of applications due to factors such as limitations of measuring equipments, update delay, and network bandwidth. Recently, modeling and querying uncertain data have attracted considerable attention from the database community. However, how to perform advanced analysis on uncertain data remains an interesting question. In this paper, we focus on the execution of skyline computation over uncertain moving objects. We propose a novel probabilistic skyline model where an uncertain object may take a probability to be in the skyline at a certain time point, therefore a p-t-skyline contains those moving objects whose skyline probabilities are at least p at time point t. Computing probabilistic skyline over a large number of uncertain moving objects is a daunting task in practice. In order to efficiently compute the probabilistic skyline query, we propose a discrete-and-conquer strategy, which follows the sampling-bounding-pruning-refining procedure. To further reduce the skyline computation cost, we propose an enhanced framework that is based on a multi-dimensional indexing structure combined with the discrete-and-conquer strategy. Through extensive experiments with synthetic datasets, we show that the framework can efficiently support skyline queries over uncertain moving object and is scalable on large data sets

    Privacy Aware Parallel Computation of Skyline Sets Queries from Distributed Databases

    Get PDF
    A skyline query finds objects that are not dominated by another object from a given set of objects. Skyline queries help us to filter unnecessary information efficiently and provide us clues for various decision making tasks. However, we cannot use skyline queries in privacy aware environment, since we have to hide individual's records values even though there is no ID information. Therefore, we considered skyline sets queries. The skyline set query returns skyline sets from all possible sets, each of which is composed of some objects in a database. With the growth of network infrastructure data are stored in distributed databases. In this paper, we expand the idea to compute skyline sets queries in parallel fashion from distributed databases without disclosing individual records to others. The proposed method utilizes an agent-based parallel computing framework that can efficiently compute skyline sets queries and can solve the privacy problems of skyline queries in distributed environment. The computation of skyline sets is performed simultaneously in all databases which increases parallelism and reduces the computation time
    corecore