178 research outputs found

    Low power architectures for streaming applications

    Get PDF

    Energy Model of Networks-on-Chip and a Bus

    Get PDF
    A Network-on-Chip (NoC) is an energy-efficient onchip communication architecture for Multi-Processor Systemon-Chip (MPSoC) architectures. In earlier papers we proposed two Network-on-Chip architectures based on packet-switching and circuit-switching. In this paper we derive an energy model for both NoC architectures to predict their energy consumption per transported bit. Both architectures are also compared with a traditional bus architecture. The energy model is primarily needed to find a near optimal run-time mapping (from an energy point of view) of inter-process communication to NoC link

    Predictable multi-processor system on chip design for multimedia applications

    Get PDF
    The design of multimedia systems has become increasingly complex due to consumer requirements. Consumers demand the functionalities offered by a huge desktop from these systems. Many of these systems are mobile. Therefore, power consumption and size of these devices should be small. These systems are increasingly becoming multi-processor based (MPSoCs) for the reasons of power and performance. Applications execute on these systems in different combinations also known as use-cases. Applications may have different performance requirements in each use-case. Currently, verification of all these use-cases takes bulk of the design effort. There is a need for analysis based techniques so that the platforms have a predictable behaviour and in turn provide guarantees on performance without expending precious man hours on verification. In this dissertation, techniques and architectures have been developed to design and manage these multi-processor based systems efficiently. The dissertation presents predictable architectural components for MPSoCs, a Predictable MPSoC design strategy, automatic platform synthesis tool, a run-time system and an MPSoC simulation technique. The introduction of predictability helps in rapid design of MPSoC platforms. Chapter 1 of the thesis studies the trends in modern multimedia applications and processor architectures. The chapter further highlights the problems in the design of MPSoC platforms and emphasizes the need of predictable design techniques. Predictable design techniques require predictable application and architectural components. The chapter further elaborates on Synchronous Data Flow Graphs which are used to model the applications throughout this thesis. The chapter presents the architecture template used in this thesis and enlists the contributions of the thesis. One of the contributions of this thesis is the design of a predictable component called communication assist. Chapter 2 of the thesis describes the architecture of this communication assist. The communication assist presented in this thesis not only decouples the communication from computation but also provides timing guarantees. Based on this communication assist, an MPSoC platform generation technique has been presented that can design MPSoC platforms capable of satisfying the throughput constraints of multiple applications in all use-cases. The technique is presented in Chapter 3. The design strategy uses three simple steps for platform design. In the first step it finds the required number of processors. The second step minimizes the communication interconnect between the processors and the third step minimizes the communication memory requirement of the platform. Further in Chapter 4, a tool has been developed to generate CA-based platforms for FPGAs. The output of this tool can be used to synthesize platforms on real hardware with the help of FPGA synthesis tools. The applications executing on these platforms often exhibit dynamism e.g. variation in task execution times and change in application throughput requirements. Further, new applications may often be added by consumers at run-time. Resource managers have been presented in literature to handle such dynamic situations. However, the scalability of these resource managers becomes an issue with the increase in number of processors and applications. Chapter 5 presents distributed run-time resource management techniques. Two versions of distributed resource managers have been presented which are scalable with the number of applications and processors. MPSoC platforms for real-time applications are designed assuming worst-case task execution times. It is known that the difference between average-case and worst-case behaviour can be quite large. Therefore, knowing the average case performance is also important for the system designer, and software simulation is often employed to estimate this. However, simulation in software is slow and does not scale with the number of applications and processing elements. In Chapter 6, a fast and scalable simulation methodology is introduced that can simulate the execution of multiple applications on an MPSoC platform. It is based on parallel execution of SDF (Synchronous Data Flow) models of applications. The simulation methodology uses Parallel Discrete Event Simulation (PDES) primitives and it is termed as "Smart Conservative PDES". The methodology generates a parallel simulator which is synthesizable on FPGAs. The framework can also be used to model dynamic arbitration policies which are difficult to analyse using models. The generated platform is also useful in carrying out Design Space Exploration as shown in the thesis. Finally, Chapter 7 summarizes the main findings and (practical) implications of the studies described in previous chapters of this dissertation. Using the contributions mentioned in the thesis, a designer can design and implement predictable multiprocessor based systems capable of satisfying throughput constraints of multiple applications in given set of use-cases, and employ resource management strategies to deal with dynamism in the applications. The chapter also describes the main limitations of this dissertation and makes suggestions for future research

    Worst-case temporal analysis of real-time dynamic streaming applications

    Get PDF

    A Survey and Comparative Study of Hard and Soft Real-time Dynamic Resource Allocation Strategies for Multi/Many-core Systems

    Get PDF
    Multi-/many-core systems are envisioned to satisfy the ever-increasing performance requirements of complex applications in various domains such as embedded and high-performance computing. Such systems need to cater to increasingly dynamic workloads, requiring efficient dynamic resource allocation strategies to satisfy hard or soft real-time constraints. This article provides an extensive survey of hard and soft real-time dynamic resource allocation strategies proposed since the mid-1990s and highlights the emerging trends for multi-/many-core systems. The survey covers a taxonomy of the resource allocation strategies and considers their various optimization objectives, which have been used to provide comprehensive comparison. The strategies employ various principles, such as market and biological concepts, to perform the optimizations. The trend followed by the resource allocation strategies, open research challenges, and likely emerging research directions have also been provided

    Fast, Accurate and Detailed NoC Simulations

    Get PDF
    Network-on-Chip (NoC) architectures have a wide variety of parameters that can be adapted to the designer's requirements. Fast exploration of this parameter space is only possible at a high-level and several methods have been proposed. Cycle and bit accurate simulation is necessary when the actual router's RTL description needs to be evaluated and verified. However, extensive simulation of the NoC architecture with cycle and bit accuracy is prohibitively time consuming. In this paper we describe a simulation method to simulate large parallel homogeneous and heterogeneous network-on-chips on a single FPGA. The method is especially suitable for parallel systems where lengthy cycle and bit accurate simulations are required. As a case study, we use a NoC that was modelled and simulated in SystemC. We simulate the same NoC on the described FPGA simulator. This enables us to observe the NoC behavior under a large variety of traffic patterns. Compared with the SystemC simulation we achieved a speed-up of 80-300, without compromising the cycle and bit level accuracy

    Energy Model of Networks-on-Chip and a Bus

    Full text link

    Driving the Network-on-Chip Revolution to Remove the Interconnect Bottleneck in Nanoscale Multi-Processor Systems-on-Chip

    Get PDF
    The sustained demand for faster, more powerful chips has been met by the availability of chip manufacturing processes allowing for the integration of increasing numbers of computation units onto a single die. The resulting outcome, especially in the embedded domain, has often been called SYSTEM-ON-CHIP (SoC) or MULTI-PROCESSOR SYSTEM-ON-CHIP (MP-SoC). MPSoC design brings to the foreground a large number of challenges, one of the most prominent of which is the design of the chip interconnection. With a number of on-chip blocks presently ranging in the tens, and quickly approaching the hundreds, the novel issue of how to best provide on-chip communication resources is clearly felt. NETWORKS-ON-CHIPS (NoCs) are the most comprehensive and scalable answer to this design concern. By bringing large-scale networking concepts to the on-chip domain, they guarantee a structured answer to present and future communication requirements. The point-to-point connection and packet switching paradigms they involve are also of great help in minimizing wiring overhead and physical routing issues. However, as with any technology of recent inception, NoC design is still an evolving discipline. Several main areas of interest require deep investigation for NoCs to become viable solutions: ā€¢ The design of the NoC architecture needs to strike the best tradeoff among performance, features and the tight area and power constraints of the onchip domain. ā€¢ Simulation and verification infrastructure must be put in place to explore, validate and optimize the NoC performance. ā€¢ NoCs offer a huge design space, thanks to their extreme customizability in terms of topology and architectural parameters. Design tools are needed to prune this space and pick the best solutions. ā€¢ Even more so given their global, distributed nature, it is essential to evaluate the physical implementation of NoCs to evaluate their suitability for next-generation designs and their area and power costs. This dissertation performs a design space exploration of network-on-chip architectures, in order to point-out the trade-offs associated with the design of each individual network building blocks and with the design of network topology overall. The design space exploration is preceded by a comparative analysis of state-of-the-art interconnect fabrics with themselves and with early networkon- chip prototypes. The ultimate objective is to point out the key advantages that NoC realizations provide with respect to state-of-the-art communication infrastructures and to point out the challenges that lie ahead in order to make this new interconnect technology come true. Among these latter, technologyrelated challenges are emerging that call for dedicated design techniques at all levels of the design hierarchy. In particular, leakage power dissipation, containment of process variations and of their effects. The achievement of the above objectives was enabled by means of a NoC simulation environment for cycleaccurate modelling and simulation and by means of a back-end facility for the study of NoC physical implementation effects. Overall, all the results provided by this work have been validated on actual silicon layout
    • ā€¦
    corecore