34 research outputs found

    Qudit entanglers using quantum optimal control

    Full text link
    We study the generation of two-qudit entangling quantum logic gates using two techniques in quantum optimal control. We take advantage of both continuous, Lie-algebraic control and digital, Lie-group control. In both cases, the key is access to a time-dependent Hamiltonian which can generate an arbitrary unitary matrix in the group SU(d2d^2). We find efficient protocols for creating high-fidelity entangling gates. As a test of our theory, we study the case of qudits robustly encoded in nuclear spins of alkaline earth atoms and manipulated with magnetic and optical fields, with entangling interactions arising from the well-known Rydberg blockade. We applied this in a case study based on a d=10d=10 dimensional qudit encoded in the I=9/2I=9/2 nuclear spin in 87^{87}Sr, controlled through a combination of nuclear spin-resonance, a tensor AC-Stark shift, and Rydberg dressing, which allows us to generate an arbitrary symmetric entangling two-qudit gate such as CPhase. Our techniques can be used to implement qudit entangling gates for any 2≤d≤102\le d \le10 encoded in the nuclear spin. We also studied how decoherence due to the finite lifetime of the Rydberg states affects the creation of the CPhase gate and found, through numerical optimization, a fidelity of 0.99850.9985, 0.99800.9980, 0.99420.9942, and 0.98000.9800 for d=2d=2, d=3d=3, d=5d=5, and d=7d=7 respectively. This provides a powerful platform to explore the various applications of quantum information processing of qudits including metrological enhancement with qudits, quantum simulation, universal quantum computation, and quantum error correction.Comment: Included more details and figure

    Ancillas in Quantum Computation: Beyond Two-Level Systems

    Get PDF
    Quantum computers have the potential to solve problems that are believed to be classically intractable. However, building such a device is proving to be very challenging. In this thesis, two physically promising settings for quantum computation are investigated: the one-way quantum computer and ancilla-based quantum gates. The majority of both the theoretical and experimental focus in the field of quantum computation has been on computation using 2-level quantum systems, known as qubits. In contrast to this, in this thesis I consider the relatively less well-understood setting of quantum computation using continuous variables or d-level quantum systems, called qudits. I develop a simple notation that encompasses each different encoding, and is applicable to a `general quantum variable'. These ideas are then used to investigate computational depth (a proxy for time) in quantum circuits and one-way quantum computations in this general quantum variable setting. In doing so, the parallelism inherent in the one-way quantum computer is made precise. In the second half of this thesis, a range of techniques are proposed for implementing entangling gates on a well-isolated computational register via interactions with `ancillary' systems. In particular, ancilla-based quantum gates for general quantum variables are investigated - including the interesting case of hybrid quantum computation, whereby more than one encoding is used in tandem. The methods proposed herein each have their own unique advantages, such as: reducing gate-counts in certain circuits, allowing for inherently parallel computation, or minimising the physical requirements for universal quantum computation. In particular, the final gate techniques that are proposed in this thesis may implement any quantum computation using only a single fixed ancilla-register interaction gate and ancillas prepared in simple states. This then allows the computational register to consist of well-isolated `memory' quantum variables and the ancillas need only be optimised for a single high-quality fixed interaction gate. Hence, this provides a simple and highly promising setting for physically implementing a quantum computer

    Quantum Compiling Methods for Fault-Tolerant Gate Sets of Dimension Greater than Two

    Get PDF
    Fault-tolerant gate sets whose generators belong to the Clifford hierarchy form the basis of many protocols for scalable quantum computing architectures. At the beginning of the decade, number-theoretic techniques were employed to analyze circuits over these gate sets on single qubits, providing the basis for a number of state-of-the-art quantum compiling algorithms. In this dissertation, I further this program by employing number-theoretic techniques for higher-dimensional gate sets on both qudit and multi-qubit circuits. First, I introduce canonical forms for single qutrit Clifford+T circuits and prove that every single-qutrit Clifford+T operator admits a unique such canonical form. I show that these canonical forms are T-optimal and describe an algorithm which takes as input a Clifford+T circuit and outputs the canonical form for that operator. The algorithm runs in time linear in the number of gates of the circuit. Our results provide a higher-dimensional generalization of prior work by Matsumoto and Amano who introduced similar canonical forms for single-qubit Clifford+T circuits. Finally, we show that a similar extension of these normal forms to higher dimensions exists, but do not establish uniqueness. Moving to multi-qubit circuits, I provide number-theoretic characterizations for certain restricted Clifford+T circuits by considering unitary matrices over subrings of Z[1/√2, i]. We focus on the subrings Z[1/2], Z[1/√2], Z[1/√−2], and Z[1/2, i], and we prove that unitary matrices with entries in these rings correspond to circuits over well-known universal gate sets. In each case, the desired gate set is obtained by extending the set of classical reversible gates {X, CX, CCX} with an analogue of the Hadamard gate and an optional phase gate. I then establish the existence and uniqueness of a normal form for one of these gate sets, the two-qubit gate set of Clifford+Controlled Phase gate CS. This normal form is optimal in the number of CS gates, making it the first normal form that is non-Clifford optimal for a fault tolerant universal multi-qubit gate set. We provide a synthesis algorithm that runs in a time linear in the gate count and outputs the equivalent normal form. In proving the existence and uniqueness of the normal form, we likewise establish the generators and relations for the two-qubit Clifford+CS group. Finally, we demonstrate that a lower bound of 5 log2 (1/ε) + O(1) CS gates are required to ε-approximate any 4 × 4 unitary matrix. Lastly, using the characterization of circuits over the Clifford+CS gate set and the existence of an optimal normal form, I provide an ancilla-free inexact synthesis algorithm for two-qubit unitaries using the Clifford+SC gate set for Pauli-rotations. These operators require 6 log2 (1/ε) + O(1) CS gates to synthesize in the typical case and 8 log2 (1/ε) + O(1) in the worst case

    The role of cohomology in quantum computation with magic states

    Get PDF
    A web of cohomological facts relates quantum error correction, measurement-based quantum computation, symmetry protected topological order and contextuality. Here we extend this web to quantum computation with magic states. In this computational scheme, the negativity of certain quasiprobability functions is an indicator for quantumness. However, when constructing quasiprobability functions to which this statement applies, a marked difference arises between the cases of even and odd local Hilbert space dimension. At a technical level, establishing negativity as an indicator of quantumness in quantum computation with magic states relies on two properties of the Wigner function: their covariance with respect to the Clifford group and positive representation of Pauli measurements. In odd dimension, Gross' Wigner function – an adaptation of the original Wigner function to odd-finite-dimensional Hilbert spaces – possesses these properties. In even dimension, Gross' Wigner function doesn't exist. Here we discuss the broader class of Wigner functions that, like Gross', are obtained from operator bases. We find that such Clifford-covariant Wigner functions do not exist in any even dimension, and furthermore, Pauli measurements cannot be positively represented by them in any even dimension whenever the number of qudits is n≥\geq2. We establish that the obstructions to the existence of such Wigner functions are cohomological

    Simulating boson sampling in lossy architectures

    Get PDF
    Photon losses are among the strongest imperfections affecting multi-photon interference. Despite their importance, little is known about their effect on boson sampling experiments. In this work we show that using classical computers, one can efficiently simulate multi-photon interference in all architectures that suffer from an exponential decay of the transmission with the depth of the circuit, such as integrated photonic circuits or optical fibers. We prove that either the depth of the circuit is large enough that it can be simulated by thermal noise with an algorithm running in polynomial time, or it is shallow enough that a tensor network simulation runs in quasi-polynomial time. This result suggests that in order to implement a quantum advantage experiment with single-photons and linear optics new experimental platforms may be needed

    Quantum Computation with Gottesman-Kitaev-Preskill Codes: Logical Gates, Measurements, and Analysis Techniques

    Get PDF
    The Gottesman-Kitaev-Preskill (GKP) error-correcting code uses one or more bosonic modes to encode a finite-dimensional logical space, allowing a low-error logical qubit to be encoded in a small number of resonators. In this thesis, I propose new methods to implement logical gates and measurements with GKP codes and analyse their performance. The logical gate scheme uses the single-qubit Clifford frame to greatly reduce the number of gates needed to implement an algorithm without increasing the hardware requirements. The logical measurement scheme uses one ancilla mode to achieve a 0.1% logical error rate over a measurement time of 630 ns when the measurement efficiency is as low as 75%. Finally, I provide a subsystem decomposition which can be used to analyse GKP codes efficiently even as the Fock space distribution of the codestates goes to infinity

    New Hardness Results for the Permanent Using Linear Optics

    Get PDF
    In 2011, Aaronson gave a striking proof, based on quantum linear optics, that the problem of computing the permanent of a matrix is #P-hard. Aaronson\u27s proof led naturally to hardness of approximation results for the permanent, and it was arguably simpler than Valiant\u27s seminal proof of the same fact in 1979. Nevertheless, it did not show #P-hardness of the permanent for any class of matrices which was not previously known. In this paper, we present a collection of new results about matrix permanents that are derived primarily via these linear optical techniques. First, we show that the problem of computing the permanent of a real orthogonal matrix is #P-hard. Much like Aaronson\u27s original proof, this implies that even a multiplicative approximation remains #P-hard to compute. The hardness result even translates to permanents of orthogonal matrices over the finite field F_{p^4} for p != 2, 3. Interestingly, this characterization is tight: in fields of characteristic 2, the permanent coincides with the determinant; in fields of characteristic 3, one can efficiently compute the permanent of an orthogonal matrix by a nontrivial result of Kogan. Finally, we use more elementary arguments to prove #P-hardness for the permanent of a positive semidefinite matrix. This result shows that certain probabilities of boson sampling experiments with thermal states are hard to compute exactly, despite the fact that they can be efficiently sampled by a classical computer

    Non-Local Multi-Qubit Quantum Gates via a Driven Cavity

    Full text link
    We present two protocols for implementing deterministic non-local multi-qubit quantum gates on qubits coupled to a common cavity mode. The protocols rely only on a classical drive of the cavity modes, while no external drive of the qubits is required. In the first protocol, the state of the cavity follows a closed trajectory in phase space and accumulates a geometric phase depending on the state of the qubits. The second protocol uses an adiabatic evolution of the combined qubit-cavity system to accumulate a dynamical phase. Repeated applications of this protocol allow for the realization of phase gates with arbitrary phases, e.g. phase-rotation gates and multi-controlled-Z gates. For both protocols, we provide analytic solutions for the error rates, which scale as ∼N/C\sim N/\sqrt{C}, with CC the cooperativity and NN the qubit number. Our protocols are applicable to a variety of systems and can be generalized by replacing the cavity by a different bosonic mode, such as a phononic mode. We provide estimates of gate fidelities and durations for atomic and molecular qubits coupled to an optical and a microwave cavity, respectively, and describe some applications for error correction.Comment: 7 pages + 7 pages supplementary information, 3 figure
    corecore