279 research outputs found

    A tool for model-checking Markov chains

    Get PDF
    Markov chains are widely used in the context of the performance and reliability modeling of various systems. Model checking of such chains with respect to a given (branching) temporal logic formula has been proposed for both discrete [34, 10] and continuous time settings [7, 12]. In this paper, we describe a prototype model checker for discrete and continuous-time Markov chains, the Erlangen-Twente Markov Chain Checker EÎMC2, where properties are expressed in appropriate extensions of CTL. We illustrate the general benefits of this approach and discuss the structure of the tool. Furthermore, we report on successful applications of the tool to some examples, highlighting lessons learned during the development and application of EÎMC2

    Rare event analysis of communication networks

    Get PDF

    Importance Functions for RESTART Simulation of General Jackson Networks

    Full text link
    RESTART is an accelerated simulation technique that allows the evaluation of extremely low probabilities. In this method a number of simulation retrials are performed when the process enters regions of the state space where the chance of occurrence of the rare event is higher. These regions are defined by means of a function of the system state called the importance function. Guidelines for obtaining suitable importance functions and formulas for the importance function of two-stage networks were provided in previous papers. In this paper, we obtain effective importance functions for RESTART simulation of Jackson networks where the rare set is defined as the number of customers in a particular (‘target’) node exceeding a predefined threshold. Although some rough approximations and assumptions are used to derive the formulas of the importance functions, they are good enough to estimate accurately very low probabilities for different network topologies within short computational time
    • 

    corecore