148 research outputs found

    Efficient calculation of degenerate atomic rates by numerical quadrature on GPUs

    Get PDF
    The rates of atomic processes in cold, dense plasmas are governed strongly by effects of quantum degeneracy. The electrons follow Fermi-Dirac statis- tics and their high density limits the number of quantum states available for occupation after a collision. These factors preclude a direct solution to the usual rate coefficient integrals. We summarise the formulation of this problem and present a simple, but efficient method of evaluating collisional rate coefficients via direct numerical integration. Numerical quadrature has an intrinsically high level of parallelism, ideally suited for graphics processor units. GPUs are particularly suited to this problem because of the large number of integrals which must be carried out simultaneously for a given atomic model. A CUDA code to calculate the rates of signicant atomic processes as part of a collisional-radiative model is presented and discussed. This approach may be readily extended to other applications where rapid and repeated evaluation of many integrals is required

    Efficient calculation of atomic rate coefficients in dense plasmas

    Get PDF
    Modelling electron statistics in a cold, dense plasma by the Fermi-Dirac distribution leads to complications in the calculations of atomic rate coefficients. The Pauli exclusion principle slows down the rate of collisions as electrons must find unoccupied quantum states and adds a further computational cost. Methods to calculate these coefficients by direct numerical integration with a high degree of parallelism are presented. This degree of optimization allows the effects of degeneracy to be incorporated into a time-dependent collisional-radiative model. Example results from such a model are presented

    Nucleon-Nucleon Scattering in a Wave-Packet Formalism

    Get PDF
    In this thesis I analyse the prospect of leveraging statistical analyses of the strong nuclear interaction by using the wave-packet continuum discretisation (WPCD) method to efficiently compute nucleon-nucleon (NN) scattering observables on a graphics processing unit (GPU). The WPCD method gives approximate solutions to the S-matrix at multiple scattering energies at the cost of a single eigendecomposition of the NN channel Hamiltonian. In particular, I demonstrate and analyse the accuracy and inherent parallelism of the WPCD method by computing the most common NN scattering observables using a chiral Hamiltonian at next-to-next-to-leading order. I present an in-depth numerical study of the WPCD method and the GPU acceleration thereof. Additionally, I discuss which windows of opportunity are open for studying the strong nuclear interaction using data from few-nucleon scattering experiments

    Free electron degeneracy effects on collisional excitation, ionization, de-excitation and three-body recombination

    Get PDF
    Collisional-radiative models enable average ionization and ionization populations, plus the rates of absorption and emission of radiation to be calculated for plasmas not in thermal equilbrium. At high densities and low temperatures, electrons may have a high occupancy of the free electron quantum states and evaluations of rate coefficients need to take into account the free electron degeneracy. We demonstrate that electron degeneracy can reduce collisional rate coefficients by orders-of-magnitude from values calculated neglecting degeneracy. We show that assumptions regarding the collisional differential cross-section can alter collisional ionization and recombination rate coefficients by a further factor two under conditions relevant to inertial fusion

    Hydrodynamics of Suspensions of Passive and Active Rigid Particles: A Rigid Multiblob Approach

    Get PDF
    We develop a rigid multiblob method for numerically solving the mobility problem for suspensions of passive and active rigid particles of complex shape in Stokes flow in unconfined, partially confined, and fully confined geometries. As in a number of existing methods, we discretize rigid bodies using a collection of minimally-resolved spherical blobs constrained to move as a rigid body, to arrive at a potentially large linear system of equations for the unknown Lagrange multipliers and rigid-body motions. Here we develop a block-diagonal preconditioner for this linear system and show that a standard Krylov solver converges in a modest number of iterations that is essentially independent of the number of particles. For unbounded suspensions and suspensions sedimented against a single no-slip boundary, we rely on existing analytical expressions for the Rotne-Prager tensor combined with a fast multipole method or a direct summation on a Graphical Processing Unit to obtain an simple yet efficient and scalable implementation. For fully confined domains, such as periodic suspensions or suspensions confined in slit and square channels, we extend a recently-developed rigid-body immersed boundary method to suspensions of freely-moving passive or active rigid particles at zero Reynolds number. We demonstrate that the iterative solver for the coupled fluid and rigid body equations converges in a bounded number of iterations regardless of the system size. We optimize a number of parameters in the iterative solvers and apply our method to a variety of benchmark problems to carefully assess the accuracy of the rigid multiblob approach as a function of the resolution. We also model the dynamics of colloidal particles studied in recent experiments, such as passive boomerangs in a slit channel, as well as a pair of non-Brownian active nanorods sedimented against a wall.Comment: Under revision in CAMCOS, Nov 201

    Rigorous numerical approaches in electronic structure theory

    Get PDF
    Electronic structure theory concerns the description of molecular properties according to the postulates of quantum mechanics. For practical purposes, this is realized entirely through numerical computation, the scope of which is constrained by computational costs that increases rapidly with the size of the system. The significant progress made in this field over the past decades have been facilitated in part by the willingness of chemists to forego some mathematical rigour in exchange for greater efficiency. While such compromises allow large systems to be computed feasibly, there are lingering concerns over the impact that these compromises have on the quality of the results that are produced. This research is motivated by two key issues that contribute to this loss of quality, namely i) the numerical errors accumulated due to the use of finite precision arithmetic and the application of numerical approximations, and ii) the reliance on iterative methods that are not guaranteed to converge to the correct solution. Taking the above issues in consideration, the aim of this thesis is to explore ways to perform electronic structure calculations with greater mathematical rigour, through the application of rigorous numerical methods. Of which, we focus in particular on methods based on interval analysis and deterministic global optimization. The Hartree-Fock electronic structure method will be used as the subject of this study due to its ubiquity within this domain. We outline an approach for placing rigorous bounds on numerical error in Hartree-Fock computations. This is achieved through the application of interval analysis techniques, which are able to rigorously bound and propagate quantities affected by numerical errors. Using this approach, we implement a program called Interval Hartree-Fock. Given a closed-shell system and the current electronic state, this program is able to compute rigorous error bounds on quantities including i) the total energy, ii) molecular orbital energies, iii) molecular orbital coefficients, and iv) derived electronic properties. Interval Hartree-Fock is adapted as an error analysis tool for studying the impact of numerical error in Hartree-Fock computations. It is used to investigate the effect of input related factors such as system size and basis set types on the numerical accuracy of the Hartree-Fock total energy. Consideration is also given to the impact of various algorithm design decisions. Examples include the application of different integral screening thresholds, the variation between single and double precision arithmetic in two-electron integral evaluation, and the adjustment of interpolation table granularity. These factors are relevant to both the usage of conventional Hartree-Fock code, and the development of Hartree-Fock code optimized for novel computing devices such as graphics processing units. We then present an approach for solving the Hartree-Fock equations to within a guaranteed margin of error. This is achieved by treating the Hartree-Fock equations as a non-convex global optimization problem, which is then solved using deterministic global optimization. The main contribution of this work is the development of algorithms for handling quantum chemistry specific expressions such as the one and two-electron integrals within the deterministic global optimization framework. This approach was implemented as an extension to an existing open source solver. Proof of concept calculations are performed for a variety of problems within Hartree-Fock theory, including those in i) point energy calculation, ii) geometry optimization, iii) basis set optimization, and iv) excited state calculation. Performance analyses of these calculations are also presented and discussed

    Gaussian conversion protocols forcubic phase state generation

    Get PDF
    This licentiate thesis will introduce the background of the appended paper. The scope of this thesis is to find a Gaussian conversion protocol that allows one to prepare cubic phase states, which are resourceful states for achieving universality in continuous-variable quantum computation. The starting point of the protocol is a trisqueezed state, which has been realized experimentally with superconducting microwave circuits. With the help of machine learning, large fidelity can be achieved in these protocols. Furthermore, these protocols could also be helpful for other applications in continuous-variable systems as well

    The use of primitives in the calculation of radiative view factors

    Get PDF
    Compilations of radiative view factors (often in closed analytical form) are readily available in the open literature for commonly encountered geometries. For more complex three-dimensional (3D) scenarios, however, the effort required to solve the requisite multi-dimensional integrations needed to estimate a required view factor can be daunting to say the least. In such cases, a combination of finite element methods (where the geometry in question is sub-divided into a large number of uniform, often triangular, elements) and Monte Carlo Ray Tracing (MC-RT) has been developed, although frequently the software implementation is suitable only for a limited set of geometrical scenarios. Driven initially by a need to calculate the radiative heat transfer occurring within an operational fibre-drawing furnace, this research set out to examine options whereby MC-RT could be used to cost-effectively calculate any generic 3D radiative view factor using current vectorisation technologies
    • …
    corecore