406 research outputs found

    Efficient caching in content-centric networks using OpenFlow

    Get PDF
    International audienceContent-Centric Networking (CCN) is designed for efficient content dissemination and supports caching contents on the path from content providers to content consumers to improve user experience and reduce costs. However, this strategy is not optimal inside a domain. In this paper, we propose a solution to improve caching in CCN using a Software-Defined Networking approach

    The Road Ahead for Networking: A Survey on ICN-IP Coexistence Solutions

    Full text link
    In recent years, the current Internet has experienced an unexpected paradigm shift in the usage model, which has pushed researchers towards the design of the Information-Centric Networking (ICN) paradigm as a possible replacement of the existing architecture. Even though both Academia and Industry have investigated the feasibility and effectiveness of ICN, achieving the complete replacement of the Internet Protocol (IP) is a challenging task. Some research groups have already addressed the coexistence by designing their own architectures, but none of those is the final solution to move towards the future Internet considering the unaltered state of the networking. To design such architecture, the research community needs now a comprehensive overview of the existing solutions that have so far addressed the coexistence. The purpose of this paper is to reach this goal by providing the first comprehensive survey and classification of the coexistence architectures according to their features (i.e., deployment approach, deployment scenarios, addressed coexistence requirements and architecture or technology used) and evaluation parameters (i.e., challenges emerging during the deployment and the runtime behaviour of an architecture). We believe that this paper will finally fill the gap required for moving towards the design of the final coexistence architecture.Comment: 23 pages, 16 figures, 3 table

    Content Based Traffic Engineering in Software Defined Information Centric Networks

    Full text link
    This paper describes a content centric network architecture which uses software defined networking principles to implement efficient metadata driven services by extracting content metadata at the network layer. The ability to access content metadata transparently enables a number of new services in the network. Specific examples discussed here include: a metadata driven traffic engineering scheme which uses prior knowledge of content length to optimize content delivery, a metadata driven content firewall which is more resilient than traditional firewalls and differentiated treatment of content based on the type of content being accessed. A detailed outline of an implementation of the proposed architecture is presented along with some basic evaluation

    Fog-enabled Edge Learning for Cognitive Content-Centric Networking in 5G

    Full text link
    By caching content at network edges close to the users, the content-centric networking (CCN) has been considered to enforce efficient content retrieval and distribution in the fifth generation (5G) networks. Due to the volume, velocity, and variety of data generated by various 5G users, an urgent and strategic issue is how to elevate the cognitive ability of the CCN to realize context-awareness, timely response, and traffic offloading for 5G applications. In this article, we envision that the fundamental work of designing a cognitive CCN (C-CCN) for the upcoming 5G is exploiting the fog computing to associatively learn and control the states of edge devices (such as phones, vehicles, and base stations) and in-network resources (computing, networking, and caching). Moreover, we propose a fog-enabled edge learning (FEL) framework for C-CCN in 5G, which can aggregate the idle computing resources of the neighbouring edge devices into virtual fogs to afford the heavy delay-sensitive learning tasks. By leveraging artificial intelligence (AI) to jointly processing sensed environmental data, dealing with the massive content statistics, and enforcing the mobility control at network edges, the FEL makes it possible for mobile users to cognitively share their data over the C-CCN in 5G. To validate the feasibility of proposed framework, we design two FEL-advanced cognitive services for C-CCN in 5G: 1) personalized network acceleration, 2) enhanced mobility management. Simultaneously, we present the simulations to show the FEL's efficiency on serving for the mobile users' delay-sensitive content retrieval and distribution in 5G.Comment: Submitted to IEEE Communications Magzine, under review, Feb. 09, 201

    Security and Privacy of IP-ICN Coexistence: A Comprehensive Survey

    Full text link
    Internet usage has changed from its first design. Hence, the current Internet must cope with some limitations, including performance degradation, availability of IP addresses, and multiple security and privacy issues. Nevertheless, to unsettle the current Internet's network layer i.e., Internet Protocol with ICN is a challenging, expensive task. It also requires worldwide coordination among Internet Service Providers , backbone, and Autonomous Services. Additionally, history showed that technology changes e.g., from 3G to 4G, from IPv4 to IPv6 are not immediate, and usually, the replacement includes a long coexistence period between the old and new technology. Similarly, we believe that the process of replacement of the current Internet will surely transition through the coexistence of IP and ICN. Although the tremendous amount of security and privacy issues of the current Internet taught us the importance of securely designing the architectures, only a few of the proposed architectures place the security-by-design. Therefore, this article aims to provide the first comprehensive Security and Privacy analysis of the state-of-the-art coexistence architectures. Additionally, it yields a horizontal comparison of security and privacy among three deployment approaches of IP and ICN protocol i.e., overlay, underlay, and hybrid and a vertical comparison among ten considered security and privacy features. As a result of our analysis, emerges that most of the architectures utterly fail to provide several SP features including data and traffic flow confidentiality, availability and communication anonymity. We believe this article draws a picture of the secure combination of current and future protocol stacks during the coexistence phase that the Internet will definitely walk across

    Next-Generation SDN and Fog Computing: A New Paradigm for SDN-Based Edge Computing

    Get PDF
    In the last few years, we have been able to see how terms like Mobile Edge Computing, Cloudlets, and Fog computing have arisen as concepts that reach a level of popularity to express computing towards network Edge. Shifting some processing tasks from the Cloud to the Edge brings challenges to the table that might have been non-considered before in next-generation Software-Defined Networking (SDN). Efficient routing mechanisms, Edge Computing, and SDN applications are challenging to deploy as controllers are expected to have different distributions. In particular, with the advances of SDN and the P4 language, there are new opportunities and challenges that next-generation SDN has for Fog computing. The development of new pipelines along with the progress regarding control-to-data plane programming protocols can also promote data and control plane function offloading. We propose a new mechanism of deploying SDN control planes both locally and remotely to attend different challenges. We encourage researchers to develop new ways to functionally deploying Fog and Cloud control planes that let cross-layer planes interact by deploying specific control and data plane applications. With our proposal, the control and data plane distribution can provide a lower response time for locally deployed applications (local control plane). Besides, it can still be beneficial for a centralized and remotely placed control plane, for applications such as path computation within the same network and between separated networks (remote control plane)

    The Price of Updating the Control Plane in Information-Centric Networks

    Full text link
    We are studying some fundamental properties of the interface between control and data planes in Information-Centric Networks. We try to evaluate the traffic between these two planes based on allowing a minimum level of acceptable distortion in the network state representation in the control plane. We apply our framework to content distribution, and see how we can compute the overhead of maintaining the location of content in the control plane. This is of importance to evaluate content-oriented network architectures: we identify scenarios where the cost of updating the control plane for content routing overwhelms the benefit of fetching a nearby copy. We also show how to minimize the cost of this overhead when associating costs to peering traffic and to internal traffic for operator-driven CDNs.Comment: 10 pages, 12 figure

    Software Defined Networks based Smart Grid Communication: A Comprehensive Survey

    Get PDF
    The current power grid is no longer a feasible solution due to ever-increasing user demand of electricity, old infrastructure, and reliability issues and thus require transformation to a better grid a.k.a., smart grid (SG). The key features that distinguish SG from the conventional electrical power grid are its capability to perform two-way communication, demand side management, and real time pricing. Despite all these advantages that SG will bring, there are certain issues which are specific to SG communication system. For instance, network management of current SG systems is complex, time consuming, and done manually. Moreover, SG communication (SGC) system is built on different vendor specific devices and protocols. Therefore, the current SG systems are not protocol independent, thus leading to interoperability issue. Software defined network (SDN) has been proposed to monitor and manage the communication networks globally. This article serves as a comprehensive survey on SDN-based SGC. In this article, we first discuss taxonomy of advantages of SDNbased SGC.We then discuss SDN-based SGC architectures, along with case studies. Our article provides an in-depth discussion on routing schemes for SDN-based SGC. We also provide detailed survey of security and privacy schemes applied to SDN-based SGC. We furthermore present challenges, open issues, and future research directions related to SDN-based SGC.Comment: Accepte
    • …
    corecore