127 research outputs found

    Division and Inversion Over Finite Fields

    Get PDF

    Bit Serial Systolic Architectures for Multiplicative Inversion and Division over GF(2<sup>m</sup>)

    Get PDF
    Systolic architectures are capable of achieving high throughput by maximizing pipelining and by eliminating global data interconnects. Recursive algorithms with regular data flows are suitable for systolization. The computation of multiplicative inversion using algorithms based on EEA (Extended Euclidean Algorithm) are particularly suitable for systolization. Implementations based on EEA present a high degree of parallelism and pipelinability at bit level which can be easily optimized to achieve local data flow and to eliminate the global interconnects which represent most important bottleneck in todays sub-micron design process. The net result is to have high clock rate and performance based on efficient systolic architectures. This thesis examines high performance but also scalable implementations of multiplicative inversion or field division over Galois fields GF(2m) in the specific case of cryptographic applications where field dimension m may be very large (greater than 400) and either m or defining irreducible polynomial may vary. For this purpose, many inversion schemes with different basis representation are studied and most importantly variants of EEA and binary (Stein's) GCD computation implementations are reviewed. A set of common as well as contrasting characteristics of these variants are discussed. As a result a generalized and optimized variant of EEA is proposed which can compute division, and multiplicative inversion as its subset, with divisor in either polynomial or triangular basis representation. Further results regarding Hankel matrix formation for double-basis inversion is provided. The validity of using the same architecture to compute field division with polynomial or triangular basis representation is proved. Next, a scalable unidirectional bit serial systolic array implementation of this proposed variant of EEA is implemented. Its complexity measures are defined and these are compared against the best known architectures. It is shown that assuming the requirements specified above, this proposed architecture may achieve a higher clock rate performance w. r. t. other designs while being more flexible, reliable and with minimum number of inter-cell interconnects. The main contribution at system level architecture is the substitution of all counter or adder/subtractor elements with a simpler distributed and free of carry propagation delays structure. Further a novel restoring mechanism for result sequences of EEA is proposed using a double delay element implementation. Finally, using this systolic architecture a CMD (Combined Multiplier Divider) datapath is designed which is used as the core of a novel systolic elliptic curve processor. This EC processor uses affine coordinates to compute scalar point multiplication which results in having a very small control unit and negligible with respect to the datapath for all practical values of m. The throughput of this EC based on this bit serial systolic architecture is comparable with designs many times larger than itself reported previously

    Theory, design and application of gradient adaptive lattice filters

    Get PDF
    SIGLELD:D48933/84 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    The design and implementation of a microprocessor controlled adaptive filter

    Get PDF
    This thesis describes the construction and implementation of a microprocessor controlled recursive adaptive filter applied as a noise canceller. It describes the concept of the adaptive noise canceller, a method of estimating the received signal corrupted with additive interference (noise). This canceller has two inputs, the primary input containing the corrupted signal and the reference input consisting of the additive noise correlated in some unknown way to the primary noise. The reference input is filtered and subtracted from the primary input without degrading the desired components of the signal. This filtering process is adaptive and based on Widrow-Hoff Least-Mean-Square algorithm. Adaptive filters are programmable and have the capability to adjust their own parameters in situations where minimum piori knowledge is available about the inputs. For recursive filters, these parameters include feed-forward (non-recursive) as well as feedback (recursive) coefficients. A new design and implementation of the adaptive filter is suggested which uses a high speed 68000 microprocessor to accomplish the coefficients updating operation. Many practical problems arising in the hardware implementation are investigated. Simulation results illustrate the ability of the adaptive noise canceller to have an acceptable performance when the coefficients updating operation is carried out once every N sampling periods. Both simulation and hardware experimental results are in agreement

    Solutions to non-stationary problems in wavelet space.

    Get PDF

    Normal and optimal normal bases in finite fields

    Get PDF
    Arithmetic operations in finite fields have many applications in cryptography, coding theory, and computer algebra. The realization of these operations can often be made more efficient by the normal basis representation of the field elements. This thesis is aimed at giving a survey of recent results concerning normal bases and efficient ways of multiplication, inversion, and exponentiation when the normal basis representation is used

    A VLSI synthesis of a Reed-Solomon processor for digital communication systems

    Get PDF
    The Reed-Solomon codes have been widely used in digital communication systems such as computer networks, satellites, VCRs, mobile communications and high- definition television (HDTV), in order to protect digital data against erasures, random and burst errors during transmission. Since the encoding and decoding algorithms for such codes are computationally intensive, special purpose hardware implementations are often required to meet the real time requirements. -- One motivation for this thesis is to investigate and introduce reconfigurable Galois field arithmetic structures which exploit the symmetric properties of available architectures. Another is to design and implement an RS encoder/decoder ASIC which can support a wide family of RS codes. -- An m-programmable Galois field multiplier which uses the standard basis representation of the elements is first introduced. It is then demonstrated that the exponentiator can be used to implement a fast inverter which outperforms the available inverters in GF(2m). Using these basic structures, an ASIC design and synthesis of a reconfigurable Reed-Solomon encoder/decoder processor which implements a large family of RS codes is proposed. The design is parameterized in terms of the block length n, Galois field symbol size m, and error correction capability t for the various RS codes. The design has been captured using the VHDL hardware description language and mapped onto CMOS standard cells available in the 0.8-µm BiCMOS design kits for Cadence and Synopsys tools. The experimental chip contains 218,206 logic gates and supports values of the Galois field symbol size m = 3,4,5,6,7,8 and error correction capability t = 1,2,3, ..., 16. Thus, the block length n is variable from 7 to 255. Error correction t and Galois field symbol size m are pin-selectable. -- Since low design complexity and high throughput are desired in the VLSI chip, the algebraic decoding technique has been investigated instead of the time or transform domain. The encoder uses a self-reciprocal generator polynomial which structures the codewords in a systematic form. At the beginning of the decoding process, received words are initially stored in the first-in-first-out (FIFO) buffer as they enter the syndrome module. The Berlekemp-Massey algorithm is used to determine both the error locator and error evaluator polynomials. The Chien Search and Forney's algorithms operate sequentially to solve for the error locations and error values respectively. The error values are exclusive or-ed with the buffered messages in order to correct the errors, as the processed data leave the chip

    Glosarium Matematika

    Get PDF

    Compensation of fibre impairments in coherent optical systems

    Get PDF
    Tese de mestrado integrado. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 201

    Glosarium Matematika

    Get PDF
    273 p.; 24 cm
    corecore