53 research outputs found

    A Survey of Monte Carlo Tree Search Methods

    Get PDF
    Monte Carlo tree search (MCTS) is a recently proposed search method that combines the precision of tree search with the generality of random sampling. It has received considerable interest due to its spectacular success in the difficult problem of computer Go, but has also proved beneficial in a range of other domains. This paper is a survey of the literature to date, intended to provide a snapshot of the state of the art after the first five years of MCTS research. We outline the core algorithm's derivation, impart some structure on the many variations and enhancements that have been proposed, and summarize the results from the key game and nongame domains to which MCTS methods have been applied. A number of open research questions indicate that the field is ripe for future work

    Deep Reinforcement Learning and Game Theoretic Monte Carlo Decision Process for Safe and Efficient Lane Change Maneuver and Speed Management

    Get PDF
    Predicting the states of the surrounding traffic is one of the major problems in automated driving. Maneuvers such as lane change, merge, and exit management could pose challenges in the absence of intervehicular communication and can benefit from driver behavior prediction. Predicting the motion of surrounding vehicles and trajectory planning need to be computationally efficient for real-time implementation. This dissertation presents a decision process model for real-time automated lane change and speed management in highway and urban traffic. In lane change and merge maneuvers, it is important to know how neighboring vehicles will act in the imminent future. Human driver models, probabilistic approaches, rule-base techniques, and machine learning approach have addressed this problem only partially as they do not focus on the behavioral features of the vehicles. The main goal of this research is to develop a fast algorithm that predicts the future states of the neighboring vehicles, runs a fast decision process, and learns the regretfulness and rewardfulness of the executed decisions. The presented algorithm is developed based on level-K game theory to model and predict the interaction between the vehicles. Using deep reinforcement learning, this algorithm encodes and memorizes the past experiences that are recurrently used to reduce the computations and speed up motion planning. Also, we use Monte Carlo Tree Search (MCTS) as an effective tool that is employed nowadays for fast planning in complex and dynamic game environments. This development leverages the computation power efficiently and showcases promising outcomes for maneuver planning and predicting the environment’s dynamics. In the absence of traffic connectivity that may be due to either passenger’s choice of privacy or the vehicle’s lack of technology, this development can be extended and employed in automated vehicles for real-world and practical applications

    Consolidation of a WSN and Minimax Method to Rapidly Neutralise Intruders in Strategic Installations

    Get PDF
    Due to the sensitive international situation caused by still-recent terrorist attacks, there is a common need to protect the safety of large spaces such as government buildings, airports and power stations. To address this problem, developments in several research fields, such as video and cognitive audio, decision support systems, human interface, computer architecture, communications networks and communications security, should be integrated with the goal of achieving advanced security systems capable of checking all of the specified requirements and spanning the gap that presently exists in the current market. This paper describes the implementation of a decision system for crisis management in infrastructural building security. Specifically, it describes the implementation of a decision system in the management of building intrusions. The positions of the unidentified persons are reported with the help of a Wireless Sensor Network (WSN). The goal is to achieve an intelligent system capable of making the best decision in real time in order to quickly neutralise one or more intruders who threaten strategic installations. It is assumed that the intruders’ behaviour is inferred through sequences of sensors’ activations and their fusion. This article presents a general approach to selecting the optimum operation from the available neutralisation strategies based on a Minimax algorithm. The distances among different scenario elements will be used to measure the risk of the scene, so a path planning technique will be integrated in order to attain a good performance. Different actions to be executed over the elements of the scene such as moving a guard, blocking a door or turning on an alarm will be used to neutralise the crisis. This set of actions executed to stop the crisis is known as the neutralisation strategy. Finally, the system has been tested in simulations of real situations, and the results have been evaluated according to the final state of the intruders. In 86.5% of the cases, the system achieved the capture of the intruders, and in 59.25% of the cases, they were intercepted before they reached their objective

    Federal Discovery: A Survey of Local Rules and Practices in View of Proposed Changes to the Federal Rules

    Get PDF
    Traditionally, except for the limited role played by pleadings and bills of particulars, the attorney in a law court did not disclose evidentiary matters until trial. A judicial proceeding was a battle of wits rather than a search for the truth, \u27 and thus, each side was protected to a large extent against disclosure of his case until counsel chose to disclose it at trial. This philosophy changed some forty years ago with the introduction of discovery in the Federal Rules of Civil Procedure. In the words of Mr. Justice Murphy, the discovery rules meant that civil trials in the federal courts no longer need be carried on in the dark. The way is now clear, consistent with recognized privileges, for the parties to obtain the fullest possible knowledge of the issues and facts before trial. Or, as another observer saw it, [m]odern instruments of discovery. . . together with pretrial procedures make a trial less a game of blind man\u27s bluff and more a fair contest with the basic issues and facts disclosed to the fullest practicable extent

    Universal Player Models

    Get PDF

    Selective search in games of different complexity

    Get PDF

    Online Monte Carlo Counterfactual Regret Minimization for Search in Imperfect Information Games

    Get PDF
    ABSTRACT Online search in games has been a core interest of artificial intelligence. Search in imperfect information games (e.g., Poker, Bridge, Skat) is particularly challenging due to the complexities introduced by hidden information. In this paper, we present Online Outcome Sampling, an online search variant of Monte Carlo Counterfactual Regret Minimization, which preserves its convergence to Nash equilibrium. We show that OOS can overcome the problem of non-locality encountered by previous search algorithms and perform well against its worst-case opponents. We show that exploitability of the strategies played by OOS decreases as the amount of search time increases, and that preexisting Information Set Monte Carlo tree search (ISMCTS) can get more exploitable over time. In head-to-head play, OOS outperforms ISMCTS in games where non-locality plays a significant role, given a sufficient computation time per move
    • …
    corecore