184,159 research outputs found

    Balanced Modulation for Nonvolatile Memories

    Get PDF
    This paper presents a practical writing/reading scheme in nonvolatile memories, called balanced modulation, for minimizing the asymmetric component of errors. The main idea is to encode data using a balanced error-correcting code. When reading information from a block, it adjusts the reading threshold such that the resulting word is also balanced or approximately balanced. Balanced modulation has suboptimal performance for any cell-level distribution and it can be easily implemented in the current systems of nonvolatile memories. Furthermore, we studied the construction of balanced error-correcting codes, in particular, balanced LDPC codes. It has very efficient encoding and decoding algorithms, and it is more efficient than prior construction of balanced error-correcting codes

    Improving the redundancy of Knuth's balancing scheme for packet transmission systems

    Full text link
    A simple scheme was proposed by Knuth to generate binary balanced codewords from any information word. However, this method is limited in the sense that its redundancy is twice that of the full sets of balanced codes. The gap between Knuth's algorithm's redundancy and that of the full sets of balanced codes is significantly considerable. This paper attempts to reduce that gap. Furthermore, many constructions assume that a full balancing can be performed without showing the steps. A full balancing refers to the overall balancing of the encoded information together with the prefix. We propose an efficient way to perform a full balancing scheme that does not make use of lookup tables or enumerative coding.Comment: 11 pages, 4 figures, journal article submitted to Turkish journal of electrical and computer science

    Construction of efficient q-ary balanced codes

    Get PDF
    Abstract : Abstract—Knuth proposed a simple scheme for balancing codewords, which was later extended for generating q-ary balanced codewords. The redundancy of existing schemes for balancing q-ary sequences is larger than that of the full balanced set which is the minimum achievable redundancy. In this article, we present a simple and efficient method to encode the prefix that results in less redundancy for the construction of q-ary balanced codewords

    Binary balanced codes approaching capacity

    Get PDF
    Abstract: In this paper, the construction of binary balanced codes is revisited. Binary balanced codes refer to sets of bipolar codewords where the number of “1”s in each codeword equals that of “0”s. The first algorithm for balancing codes was proposed by Knuth in 1986; however, its redundancy is almost two times larger than that of the full set of balanced codewords. We will present an efficient and simple construction with a redundancy approaching the minimal achievable one
    corecore