1,725 research outputs found

    A comprehensive meta-analysis of cryptographic security mechanisms for cloud computing

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The concept of cloud computing offers measurable computational or information resources as a service over the Internet. The major motivation behind the cloud setup is economic benefits, because it assures the reduction in expenditure for operational and infrastructural purposes. To transform it into a reality there are some impediments and hurdles which are required to be tackled, most profound of which are security, privacy and reliability issues. As the user data is revealed to the cloud, it departs the protection-sphere of the data owner. However, this brings partly new security and privacy concerns. This work focuses on these issues related to various cloud services and deployment models by spotlighting their major challenges. While the classical cryptography is an ancient discipline, modern cryptography, which has been mostly developed in the last few decades, is the subject of study which needs to be implemented so as to ensure strong security and privacy mechanisms in today’s real-world scenarios. The technological solutions, short and long term research goals of the cloud security will be described and addressed using various classical cryptographic mechanisms as well as modern ones. This work explores the new directions in cloud computing security, while highlighting the correct selection of these fundamental technologies from cryptographic point of view

    From security to assurance in the cloud: a survey

    Get PDF
    The cloud computing paradigm has become a mainstream solution for the deployment of business processes and applications. In the public cloud vision, infrastructure, platform, and software services are provisioned to tenants (i.e., customers and service providers) on a pay-as-you-go basis. Cloud tenants can use cloud resources at lower prices, and higher performance and flexibility, than traditional on-premises resources, without having to care about infrastructure management. Still, cloud tenants remain concerned with the cloud's level of service and the nonfunctional properties their applications can count on. In the last few years, the research community has been focusing on the nonfunctional aspects of the cloud paradigm, among which cloud security stands out. Several approaches to security have been described and summarized in general surveys on cloud security techniques. The survey in this article focuses on the interface between cloud security and cloud security assurance. First, we provide an overview of the state of the art on cloud security. Then, we introduce the notion of cloud security assurance and analyze its growing impact on cloud security approaches. Finally, we present some recommendations for the development of next-generation cloud security and assurance solutions

    ACTIVE-HASH-TABLE BASED PUBLIC AUDITING FOR SECURE CLOUD STORAGE

    Get PDF
    Public auditing scheme for secure cloud storage based on dynamic hash table, which is a new two-dimensional data structure located at a third-party auditor (TPA) to record the data property information for dynamic auditing. Differing form the existing works, the proposed scheme migrates the authorized information from the cloud services provider to the TPA and thereby significantly reduces the computational cost and communication overhead. Our scheme can also achieve higher updating efficiency than the state of the art schemes. In addition, we extend our scheme to support privacy preservation by combining the homomorphic authenticator based on the public key with the random masking generated by the TPA and achieve batch auditing by employing the aggregate BLS signature technique. We formally prove the security of the proposed scheme and evaluate the auditing performance by detailed experiments and comparisons with the existing ones. The results demonstrate that the proposed scheme can effectively achieve secure auditing for cloud storage and outperform the previous schemes’ in computation complexity, storage costs, and communication overhead
    • …
    corecore