379 research outputs found

    Modeling and Energy Optimization of LDPC Decoder Circuits with Timing Violations

    Full text link
    This paper proposes a "quasi-synchronous" design approach for signal processing circuits, in which timing violations are permitted, but without the need for a hardware compensation mechanism. The case of a low-density parity-check (LDPC) decoder is studied, and a method for accurately modeling the effect of timing violations at a high level of abstraction is presented. The error-correction performance of code ensembles is then evaluated using density evolution while taking into account the effect of timing faults. Following this, several quasi-synchronous LDPC decoder circuits based on the offset min-sum algorithm are optimized, providing a 23%-40% reduction in energy consumption or energy-delay product, while achieving the same performance and occupying the same area as conventional synchronous circuits.Comment: To appear in IEEE Transactions on Communication

    Research on high performance LDPC decoder

    Get PDF
    制度:新 ; 報告番号:甲3272号 ; 学位の種類:博士(工学) ; 授与年月日:2011/3/15 ; 早大学位記番号:新557

    System-on-chip Computing and Interconnection Architectures for Telecommunications and Signal Processing

    Get PDF
    This dissertation proposes novel architectures and design techniques targeting SoC building blocks for telecommunications and signal processing applications. Hardware implementation of Low-Density Parity-Check decoders is approached at both the algorithmic and the architecture level. Low-Density Parity-Check codes are a promising coding scheme for future communication standards due to their outstanding error correction performance. This work proposes a methodology for analyzing effects of finite precision arithmetic on error correction performance and hardware complexity. The methodology is throughout employed for co-designing the decoder. First, a low-complexity check node based on the P-output decoding principle is designed and characterized on a CMOS standard-cells library. Results demonstrate implementation loss below 0.2 dB down to BER of 10^{-8} and a saving in complexity up to 59% with respect to other works in recent literature. High-throughput and low-latency issues are addressed with modified single-phase decoding schedules. A new "memory-aware" schedule is proposed requiring down to 20% of memory with respect to the traditional two-phase flooding decoding. Additionally, throughput is doubled and logic complexity reduced of 12%. These advantages are traded-off with error correction performance, thus making the solution attractive only for long codes, as those adopted in the DVB-S2 standard. The "layered decoding" principle is extended to those codes not specifically conceived for this technique. Proposed architectures exhibit complexity savings in the order of 40% for both area and power consumption figures, while implementation loss is smaller than 0.05 dB. Most modern communication standards employ Orthogonal Frequency Division Multiplexing as part of their physical layer. The core of OFDM is the Fast Fourier Transform and its inverse in charge of symbols (de)modulation. Requirements on throughput and energy efficiency call for FFT hardware implementation, while ubiquity of FFT suggests the design of parametric, re-configurable and re-usable IP hardware macrocells. In this context, this thesis describes an FFT/IFFT core compiler particularly suited for implementation of OFDM communication systems. The tool employs an accuracy-driven configuration engine which automatically profiles the internal arithmetic and generates a core with minimum operands bit-width and thus minimum circuit complexity. The engine performs a closed-loop optimization over three different internal arithmetic models (fixed-point, block floating-point and convergent block floating-point) using the numerical accuracy budget given by the user as a reference point. The flexibility and re-usability of the proposed macrocell are illustrated through several case studies which encompass all current state-of-the-art OFDM communications standards (WLAN, WMAN, xDSL, DVB-T/H, DAB and UWB). Implementations results are presented for two deep sub-micron standard-cells libraries (65 and 90 nm) and commercially available FPGA devices. Compared with other FFT core compilers, the proposed environment produces macrocells with lower circuit complexity and same system level performance (throughput, transform size and numerical accuracy). The final part of this dissertation focuses on the Network-on-Chip design paradigm whose goal is building scalable communication infrastructures connecting hundreds of core. A low-complexity link architecture for mesochronous on-chip communication is discussed. The link enables skew constraint looseness in the clock tree synthesis, frequency speed-up, power consumption reduction and faster back-end turnarounds. The proposed architecture reaches a maximum clock frequency of 1 GHz on 65 nm low-leakage CMOS standard-cells library. In a complex test case with a full-blown NoC infrastructure, the link overhead is only 3% of chip area and 0.5% of leakage power consumption. Finally, a new methodology, named metacoding, is proposed. Metacoding generates correct-by-construction technology independent RTL codebases for NoC building blocks. The RTL coding phase is abstracted and modeled with an Object Oriented framework, integrated within a commercial tool for IP packaging (Synopsys CoreTools suite). Compared with traditional coding styles based on pre-processor directives, metacoding produces 65% smaller codebases and reduces the configurations to verify up to three orders of magnitude

    A 2.0 Gb/s Throughput Decoder for QC-LDPC Convolutional Codes

    Full text link
    This paper propose a decoder architecture for low-density parity-check convolutional code (LDPCCC). Specifically, the LDPCCC is derived from a quasi-cyclic (QC) LDPC block code. By making use of the quasi-cyclic structure, the proposed LDPCCC decoder adopts a dynamic message storage in the memory and uses a simple address controller. The decoder efficiently combines the memories in the pipelining processors into a large memory block so as to take advantage of the data-width of the embedded memory in a modern field-programmable gate array (FPGA). A rate-5/6 QC-LDPCCC has been implemented on an Altera Stratix FPGA. It achieves up to 2.0 Gb/s throughput with a clock frequency of 100 MHz. Moreover, the decoder displays an excellent error performance of lower than 101310^{-13} at a bit-energy-to-noise-power-spectral-density ratio (Eb/N0E_b/N_0) of 3.55 dB.Comment: accepted to IEEE Transactions on Circuits and Systems

    A High-Performance and Low-Complexity 5G LDPC Decoder: Algorithm and Implementation

    Full text link
    5G New Radio (NR) has stringent demands on both performance and complexity for the design of low-density parity-check (LDPC) decoding algorithms and corresponding VLSI implementations. Furthermore, decoders must fully support the wide range of all 5G NR blocklengths and code rates, which is a significant challenge. In this paper, we present a high-performance and low-complexity LDPC decoder, tailor-made to fulfill the 5G requirements. First, to close the gap between belief propagation (BP) decoding and its approximations in hardware, we propose an extension of adjusted min-sum decoding, called generalized adjusted min-sum (GA-MS) decoding. This decoding algorithm flexibly truncates the incoming messages at the check node level and carefully approximates the non-linear functions of BP decoding to balance the error-rate and hardware complexity. Numerical results demonstrate that the proposed fixed-point GAMS has only a minor gap of 0.1 dB compared to floating-point BP under various scenarios of 5G standard specifications. Secondly, we present a fully reconfigurable 5G NR LDPC decoder implementation based on GA-MS decoding. Given that memory occupies a substantial portion of the decoder area, we adopt multiple data compression and approximation techniques to reduce 42.2% of the memory overhead. The corresponding 28nm FD-SOI ASIC decoder has a core area of 1.823 mm2 and operates at 895 MHz. It is compatible with all 5G NR LDPC codes and achieves a peak throughput of 24.42 Gbps and a maximum area efficiency of 13.40 Gbps/mm2 at 4 decoding iterations.Comment: 14 pages, 14 figure

    Iterative decoding for MIMO channels via modified sphere decoding

    Get PDF
    In recent years, soft iterative decoding techniques have been shown to greatly improve the bit error rate performance of various communication systems. For multiantenna systems employing space-time codes, however, it is not clear what is the best way to obtain the soft information required of the iterative scheme with low complexity. In this paper, we propose a modification of the Fincke-Pohst (sphere decoding) algorithm to estimate the maximum a posteriori probability of the received symbol sequence. The new algorithm solves a nonlinear integer least squares problem and, over a wide range of rates and signal-to-noise ratios, has polynomial-time complexity. Performance of the algorithm, combined with convolutional, turbo, and low-density parity check codes, is demonstrated on several multiantenna channels. The results for systems that employ space-time modulation schemes seem to indicate that the best performing schemes are those that support the highest mutual information between the transmitted and received signals, rather than the best diversity gain

    One minimum only trellis decoder for non-binary low-density parity-check codes

    Full text link
    © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.A one minimum only decoder for Trellis-EMS (OMO T-EMS) and for Trellis-Min-max (OMO T-MM) is proposed in this paper. In this novel approach, we avoid computing the second minimum in messages of the check node processor, and propose efficient estimators to infer the second minimum value. By doing so, we greatly reduce the complexity and at the same time improve latency and throughput of the derived architectures compared to the existing implementations of EMS and Min-max decoders. This solution has been applied to various NB-LDPC codes constructed over different Galois fields and with different degree distributions showing in all cases negligible performance loss compared to the ideal EMS and Min-max algorithms. In addition, two complete decoders for OMO T-EMS and OMO T-MM were implemented for the (837,726) NB-LDPC code over GF(32) for comparison proposals. A 90 nm CMOS process was applied, achieving a throughput of 711 Mbps and 818 Mbps respectively at a clock frequency of 250 MHz, with an area of 19.02 rmmm2{rm mm}^{2} and 16.10 rmmm2{rm mm}^{2} after place and route. To the best knowledge of the authors, the proposed decoders have higher throughput and area-time efficiency than any other solution for high-rate NB-LDPC codes with high Galois field order.This work was supported in part by the Spanish Ministerio de Ciencia e Innovacion under Grant TEC2011-27916 and in part by the Universitat Politecnica de Valencia under Grant PAID-06-2012-SP20120625. The work of F. Garcia-Herrero was supported by the Spanish Ministerio de Educacion under Grant AP2010-5178. David Declercq has been funded by the Institut Universitaire de France for this project. This paper was recommended by Associate Editor Z. Zhang.Lacruz, JO.; García Herrero, FM.; Valls Coquillat, J.; Declercq, D. (2015). One minimum only trellis decoder for non-binary low-density parity-check codes. IEEE Transactions on Circuits and Systems I: Regular Papers. 62(1):177-184. https://doi.org/10.1109/TCSI.2014.2354753S17718462
    corecore