324 research outputs found

    Efficient and robust reconstruction of botanical branching structure from laser scanned points

    Get PDF
    This paper presents a reconstruction pipeline for recovering branching structure of trees from laser scanned data points. The process is made up of two main blocks: segmentation and reconstruction. Based on a variational k-means clustering algorithm, cylindrical components and ramified regions of data points are identified and located. An adjacency graph is then built from neighborhood information of components. Simple heuristics allow us to extract a skeleton structure and identify branches from the graph. Finally, a B-spline model is computed to give a compact and accurate reconstruction of the branching system. © 2009 IEEE.published_or_final_versionThe 11th IEEE International Conference on Computer-Aided Design and Computer Graphics (CAD/Graphics '09), Huangshan, China, 19-21 August 2009. In Proceedings of 11th CAD/Graphics, 2009, p. 572-57

    Reconstructing Plant Architecture from 3D Laser scanner data

    Get PDF
    International audienceAutomatic acquisition of plant phenotypes constitutes a major bottleneck in the construction of quantitative models of plant development. This issue needs to be addressed to build accurate models of plant, useful for instance in agronomic and forestry applications. In this work, we present a method for reconstructing plant architecture from laser scanner data. A dedicated evaluation procedure based on a detailed comparison between expert and automatic reconstruction was developed to quantify accurately the quality of the reconstruction method

    Extraction of Unfoliaged Trees from Terrestrial Image Sequences

    Get PDF
    This thesis presents a generative statistical approach for the fully automatic three-dimensional (3D) extraction and reconstruction of unfoliaged deciduous trees from wide-baseline image sequences. Tree models improve the realism of 3D Geoinformation systems (GIS) by adding a natural touch. Unfoliaged trees are, however, difficult to reconstruct from images due to partially weak contrast, background clutter, occlusions, and particularly the possibly varying order of branches in images from different viewpoints. The proposed approach combines generative modeling by L-systems and statistical maximum a posteriori (MAP) estimation for the extraction of the 3D branching structure of trees. Background estimation is conducted by means of mathematical (gray scale) morphology as basis for generative modeling. A Gaussian likelihood function based on intensity differences is employed to evaluate the hypotheses. A mechanism has been devised to control the sampling sequence of multiple parameters in the Markov Chain considering their characteristics and the performance in the previous step. A tree is classified into three typical branching types after the extraction of the first level of branches and more specific Production Rules of L-systems are used accordingly. Generic prior distributions for parameters are refined based on already extracted branches in a Bayesian framework and integrated into the MAP estimation. By these means most of the branching structure besides tiny twigs can be reconstructed. Results are presented in the form of VRML (Virtual Reality Modeling Language) models demonstrating the potential of the approach as well as its current shortcomings.Diese Dissertationsschrift stellt einen generativen statistischen Ansatz fĂŒr die vollautomatische drei-dimensionale (3D) Extraktion und Rekonstruktion unbelaubter LaubbĂ€ume aus Bildsequenzen mit großer Basis vor. Modelle fĂŒr BĂ€ume verbessern den Realismus von 3D Geoinformationssystemen (GIS), indem sie Letzteren eine natĂŒrliche Note geben. Wegen z.T. schwachem Kontrast, Störobjekten im Hintergrund, Verdeckungen und insbesondere der möglicherweise unterschiedlichen Ordnung der Äste in Bildern von verschiedenen Blickpunkten sind unbelaubte BĂ€ume aber schwierig zu rekonstruieren. Der vorliegende Ansatz kombiniert generative Modellierung mittels L-Systemen und statistische Maximum A Posteriori (MAP) SchĂ€tzung fĂŒr die Extraktion der 3D Verzweigungsstruktur von BĂ€umen. Hintergrund-SchĂ€tzung wird auf Grundlage von mathematischer (Grauwert) Morphologie als Basis fĂŒr die generative Modellierung durchgefĂŒhrt. FĂŒr die Bewertung der Hypothesen wird eine Gaußsche Likelihood-Funktion basierend auf IntensitĂ€tsunterschieden benutzt. Es wurde ein Mechanismus entworfen, der die Reihenfolge der Verwendung mehrerer Parameter fĂŒr die Markoff-Kette basierend auf deren Charakteristik und Performance im letzten Schritt kontrolliert. Ein Baum wird nach der Extraktion der ersten Stufe von Ästen in drei typische Verzweigungstypen klassifiziert und es werden entsprechend Produktionsregeln von spezifischen L-Systemen verwendet. Basierend auf bereits extrahierten Ästen werden generische Prior-Verteilungen fĂŒr die Parameter in einem Bayes’schen Rahmen verfeinert und in die MAP SchĂ€tzung integriert. Damit kann ein großer Teil der Verzweigungsstruktur außer kleinen Ästen extrahiert werden. Die Ergebnisse werden als VRML (Virtual Reality Modeling Language) Modelle dargestellt. Sie zeigen das Potenzial aber auch die noch vorhandenen Defizite des Ansatzes

    Terrestrial LiDAR: a three‐dimensional revolution in how we look at trees

    Get PDF

    Reconstruction of tree branching structures from UAV-LiDAR data

    Get PDF
    The reconstruction of tree branching structures is a longstanding problem in Computer Graphics which has been studied over several data sources, from photogrammetry point clouds to Terrestrial and Aerial Laser Imaging Detection and Ranging technology. However, most data sources present acquisition errors that make the reconstruction more challenging. Among them, the main challenge is the partial or complete occlusion of branch segments, thus leading to disconnected components whether the reconstruction is resolved using graph-based approaches. In this work, we propose a hybrid method based on radius-based search and Minimum Spanning Tree for the tree branching reconstruction by handling occlusion and disconnected branches. Furthermore, we simplify previous work evaluating the similarity between ground-truth and reconstructed skeletons. Using this approach, our method is proved to be more effective than the baseline methods, regarding reconstruction results and response time. Our method yields better results on the complete explored radii interval, though the improvement is especially significant on the Ground Sampling Distance In terms of latency, an outstanding performance is achieved in comparison with the baseline method.Junta de Andalucia 1381202-GEU PYC20-RE-005-UJAEuropean Commission Spanish Government PID2021-126339OB-I00 FPU17/01902 FPU19/0010

    Approaches to three-dimensional reconstruction of plant shoot topology and geometry

    Get PDF
    There are currently 805 million people classified as chronically undernourished, and yet the World’s population is still increasing. At the same time, global warming is causing more frequent and severe flooding and drought, thus destroying crops and reducing the amount of land available for agriculture. Recent studies show that without crop climate adaption, crop productivity will deteriorate. With access to 3D models of real plants it is possible to acquire detailed morphological and gross developmental data that can be used to study their ecophysiology, leading to an increase in crop yield and stability across hostile and changing environments. Here we review approaches to the reconstruction of 3D models of plant shoots from image data, consider current applications in plant and crop science, and identify remaining challenges. We conclude that although phenotyping is receiving an increasing amount of attention – particularly from computer vision researchers – and numerous vision approaches have been proposed, it still remains a highly interactive process. An automated system capable of producing 3D models of plants would significantly aid phenotyping practice, increasing accuracy and repeatability of measurements

    Reconstructing plant architecture from 3D laser scanner data

    Full text link
    En infographie, les modÚles virtuels de plantes sont de plus en plus réalistes visuellement. Cependant, dans le contexte de la biologie et l'agronomie, l'acquisition de modÚles précis de plantes réelles reste un problÚme majeur pour la construction de modÚles quantitatifs du développement des plantes. Récemment, des scanners laser 3D permettent d'acquérir des images 3D avec pour chaque pixel une profondeur correspondant à la distance entre le scanner et la surface de l'objet visé. Cependant, une plante est généralement un ensemble important de petites surfaces sur lesquelles les méthodes classiques de reconstruction échouent. Dans cette thÚse, nous présentons une méthode pour reconstruire des modÚles virtuels de plantes à partir de scans laser. Mesurer des plantes avec un scanner laser produit des données avec différents niveaux de précision. Les scans sont généralement denses sur la surface des branches principales mais recouvrent avec peu de points les branches fines. Le cur de notre méthode est de créer itérativement un squelette de la structure de la plante en fonction de la densité locale de points. Pour cela, une méthode localement adaptative a été développée qui combine une phase de contraction et un algorithme de suivi de points. Nous présentons également une procédure d'évaluation quantitative pour comparer nos reconstructions avec des structures reconstruites par des experts de plantes réelles. Pour cela, nous explorons d'abord l'utilisation d'une distance d'édition entre arborescence. Finalement, nous formalisons la comparaison sous forme d'un problÚme d'assignation pour trouver le meilleur appariement entre deux structures et quantifier leurs différences. (Résumé d'auteur

    Automatic Retrieval of Skeletal Structures of Trees from Terrestrial Laser Scanner Data

    Get PDF
    Research on forest ecosystems receives high attention, especially nowadays with regard to sustainable management of renewable resources and the climate change. In particular, accurate information on the 3D structure of a tree is important for forest science and bioclimatology, but also in the scope of commercial applications. Conventional methods to measure geometric plant features are labor- and time-intensive. For detailed analysis, trees have to be cut down, which is often undesirable. Here, Terrestrial Laser Scanning (TLS) provides a particularly attractive tool because of its contactless measurement technique. The object geometry is reproduced as a 3D point cloud. The objective of this thesis is the automatic retrieval of the spatial structure of trees from TLS data. We focus on forest scenes with comparably high stand density and with many occlusions resulting from it. The varying level of detail of TLS data poses a big challenge. We present two fully automatic methods to obtain skeletal structures from scanned trees that have complementary properties. First, we explain a method that retrieves the entire tree skeleton from 3D data of co-registered scans. The branching structure is obtained from a voxel space representation by searching paths from branch tips to the trunk. The trunk is determined in advance from the 3D points. The skeleton of a tree is generated as a 3D line graph. Besides 3D coordinates and range, a scan provides 2D indices from the intensity image for each measurement. This is exploited in the second method that processes individual scans. Furthermore, we introduce a novel concept to manage TLS data that facilitated the researchwork. Initially, the range image is segmented into connected components. We describe a procedure to retrieve the boundary of a component that is capable of tracing inner depth discontinuities. A 2D skeleton is generated from the boundary information and used to decompose the component into sub components. A Principal Curve is computed from the 3D point set that is associated with a sub component. The skeletal structure of a connected component is summarized as a set of polylines. Objective evaluation of the results remains an open problem because the task itself is ill-defined: There exists no clear definition of what the true skeleton should be w.r.t. a given point set. Consequently, we are not able to assess the correctness of the methods quantitatively, but have to rely on visual assessment of results and provide a thorough discussion of the particularities of both methods. We present experiment results of both methods. The first method efficiently retrieves full skeletons of trees, which approximate the branching structure. The level of detail is mainly governed by the voxel space and therefore, smaller branches are reproduced inadequately. The second method retrieves partial skeletons of a tree with high reproduction accuracy. The method is sensitive to noise in the boundary, but the results are very promising. There are plenty of possibilities to enhance the method’s robustness. The combination of the strengths of both presented methods needs to be investigated further and may lead to a robust way to obtain complete tree skeletons from TLS data automatically.Die Erforschung des ÖkosystemsWald spielt gerade heutzutage im Hinblick auf den nachhaltigen Umgang mit nachwachsenden Rohstoffen und den Klimawandel eine große Rolle. Insbesondere die exakte Beschreibung der dreidimensionalen Struktur eines Baumes ist wichtig fĂŒr die Forstwissenschaften und Bioklimatologie, aber auch im Rahmen kommerzieller Anwendungen. Die konventionellen Methoden um geometrische Pflanzenmerkmale zu messen sind arbeitsintensiv und zeitaufwĂ€ndig. FĂŒr eine genaue Analyse mĂŒssen BĂ€ume gefĂ€llt werden, was oft unerwĂŒnscht ist. Hierbei bietet sich das Terrestrische Laserscanning (TLS) als besonders attraktives Werkzeug aufgrund seines kontaktlosen Messprinzips an. Die Objektgeometrie wird als 3D-Punktwolke wiedergegeben. Basierend darauf ist das Ziel der Arbeit die automatische Bestimmung der rĂ€umlichen Baumstruktur aus TLS-Daten. Der Fokus liegt dabei auf Waldszenen mit vergleichsweise hoher Bestandesdichte und mit zahlreichen daraus resultierenden Verdeckungen. Die Auswertung dieser TLS-Daten, die einen unterschiedlichen Grad an Detailreichtum aufweisen, stellt eine große Herausforderung dar. Zwei vollautomatische Methoden zur Generierung von Skelettstrukturen von gescannten BĂ€umen, welche komplementĂ€re Eigenschaften besitzen, werden vorgestellt. Bei der ersten Methode wird das Gesamtskelett eines Baumes aus 3D-Daten von registrierten Scans bestimmt. Die Aststruktur wird von einer Voxelraum-ReprĂ€sentation abgeleitet indem Pfade von Astspitzen zum Stamm gesucht werden. Der Stamm wird im Voraus aus den 3D-Punkten rekonstruiert. Das Baumskelett wird als 3D-Liniengraph erzeugt. FĂŒr jeden gemessenen Punkt stellt ein Scan neben 3D-Koordinaten und Distanzwerten auch 2D-Indizes zur VerfĂŒgung, die sich aus dem IntensitĂ€tsbild ergeben. Bei der zweiten Methode, die auf Einzelscans arbeitet, wird dies ausgenutzt. Außerdem wird ein neuartiges Konzept zum Management von TLS-Daten beschrieben, welches die Forschungsarbeit erleichtert hat. ZunĂ€chst wird das Tiefenbild in Komponenten aufgeteilt. Es wird eine Prozedur zur Bestimmung von Komponentenkonturen vorgestellt, die in der Lage ist innere TiefendiskontinuitĂ€ten zu verfolgen. Von der Konturinformation wird ein 2D-Skelett generiert, welches benutzt wird um die Komponente in Teilkomponenten zu zerlegen. Von der 3D-Punktmenge, die mit einer Teilkomponente assoziiert ist, wird eine Principal Curve berechnet. Die Skelettstruktur einer Komponente im Tiefenbild wird als Menge von Polylinien zusammengefasst. Die objektive Evaluation der Resultate stellt weiterhin ein ungelöstes Problem dar, weil die Aufgabe selbst nicht klar erfassbar ist: Es existiert keine eindeutige Definition davon was das wahre Skelett in Bezug auf eine gegebene Punktmenge sein sollte. Die Korrektheit der Methoden kann daher nicht quantitativ beschrieben werden. Aus diesem Grund, können die Ergebnisse nur visuell beurteiltwerden. Weiterhinwerden die Charakteristiken beider Methoden eingehend diskutiert. Es werden Experimentresultate beider Methoden vorgestellt. Die erste Methode bestimmt effizient das Skelett eines Baumes, welches die Aststruktur approximiert. Der Detaillierungsgrad wird hauptsĂ€chlich durch den Voxelraum bestimmt, weshalb kleinere Äste nicht angemessen reproduziert werden. Die zweite Methode rekonstruiert Teilskelette eines Baums mit hoher Detailtreue. Die Methode reagiert sensibel auf Rauschen in der Kontur, dennoch sind die Ergebnisse vielversprechend. Es gibt eine Vielzahl von Möglichkeiten die Robustheit der Methode zu verbessern. Die Kombination der StĂ€rken von beiden prĂ€sentierten Methoden sollte weiter untersucht werden und kann zu einem robusteren Ansatz fĂŒhren um vollstĂ€ndige Baumskelette automatisch aus TLS-Daten zu generieren

    Innovations in ground and airborne technologies as reference and for training and validation : terrestrial laser scanning (TLS)

    Get PDF
    The use of terrestrial laser scanning (TLS) to provide accurate estimates of 3D forest canopy structure and above-ground biomass (AGB) has developed rapidly. Here, we provide an overview of the state of the art in using TLS for estimating forest structure for AGB. We provide a general overview of TLS methods and then outline the advantages and limitations of TLS for estimating AGB. We discuss the specific type of measurements that TLS can provide, tools and methods that have been developed for turning TLS point clouds into quantifiable metrics of tree size and volume, as well as some of the challenges to improving these measurements. We discuss the role of TLS for enabling accurate calibration and validation (cal/val) of Earth observation (EO)-derived estimates of AGB from spaceborne lidar and RADAR missions. We give examples of the types of TLS equipment that are in use and how these might develop in future, and we show examples of where TLS has already been applied to measuring AGB in the tropics in particular. Comparing TLS with harvested AGB shows r(2)>0.95 for all studies thus far, with absolute agreement to within 10% at the individual tree level for all trees and to within 2% in the majority of cases. Current limitations to the uptake of TLS include the capital cost of some TLS equipment, processing complexity and the relatively small coverage that is possible. We argue that combining TLS measurements with the existing ground-based survey approaches will allow improved allometric models and better cal/val, resulting in improved regional and global estimates of AGB from space, with better-characterised, lower uncertainties. The development of new, improved equipment and methods will accelerate this process and make TLS more accessible
    • 

    corecore