2,275 research outputs found

    Structurally Tractable Uncertain Data

    Full text link
    Many data management applications must deal with data which is uncertain, incomplete, or noisy. However, on existing uncertain data representations, we cannot tractably perform the important query evaluation tasks of determining query possibility, certainty, or probability: these problems are hard on arbitrary uncertain input instances. We thus ask whether we could restrict the structure of uncertain data so as to guarantee the tractability of exact query evaluation. We present our tractability results for tree and tree-like uncertain data, and a vision for probabilistic rule reasoning. We also study uncertainty about order, proposing a suitable representation, and study uncertain data conditioned by additional observations.Comment: 11 pages, 1 figure, 1 table. To appear in SIGMOD/PODS PhD Symposium 201

    Faster Query Answering in Probabilistic Databases using Read-Once Functions

    Full text link
    A boolean expression is in read-once form if each of its variables appears exactly once. When the variables denote independent events in a probability space, the probability of the event denoted by the whole expression in read-once form can be computed in polynomial time (whereas the general problem for arbitrary expressions is #P-complete). Known approaches to checking read-once property seem to require putting these expressions in disjunctive normal form. In this paper, we tell a better story for a large subclass of boolean event expressions: those that are generated by conjunctive queries without self-joins and on tuple-independent probabilistic databases. We first show that given a tuple-independent representation and the provenance graph of an SPJ query plan without self-joins, we can, without using the DNF of a result event expression, efficiently compute its co-occurrence graph. From this, the read-once form can already, if it exists, be computed efficiently using existing techniques. Our second and key contribution is a complete, efficient, and simple to implement algorithm for computing the read-once forms (whenever they exist) directly, using a new concept, that of co-table graph, which can be significantly smaller than the co-occurrence graph.Comment: Accepted in ICDT 201

    The Fourth International VLDB Workshop on Management of Uncertain Data

    Get PDF

    Lime: Data Lineage in the Malicious Environment

    Full text link
    Intentional or unintentional leakage of confidential data is undoubtedly one of the most severe security threats that organizations face in the digital era. The threat now extends to our personal lives: a plethora of personal information is available to social networks and smartphone providers and is indirectly transferred to untrustworthy third party and fourth party applications. In this work, we present a generic data lineage framework LIME for data flow across multiple entities that take two characteristic, principal roles (i.e., owner and consumer). We define the exact security guarantees required by such a data lineage mechanism toward identification of a guilty entity, and identify the simplifying non repudiation and honesty assumptions. We then develop and analyze a novel accountable data transfer protocol between two entities within a malicious environment by building upon oblivious transfer, robust watermarking, and signature primitives. Finally, we perform an experimental evaluation to demonstrate the practicality of our protocol

    Scalable Statistical Modeling and Query Processing over Large Scale Uncertain Databases

    Get PDF
    The past decade has witnessed a large number of novel applications that generate imprecise, uncertain and incomplete data. Examples include monitoring infrastructures such as RFIDs, sensor networks and web-based applications such as information extraction, data integration, social networking and so on. In my dissertation, I addressed several challenges in managing such data and developed algorithms for efficiently executing queries over large volumes of such data. Specifically, I focused on the following challenges. First, for meaningful analysis of such data, we need the ability to remove noise and infer useful information from uncertain data. To address this challenge, I first developed a declarative system for applying dynamic probabilistic models to databases and data streams. The output of such probabilistic modeling is probabilistic data, i.e., data annotated with probabilities of correctness/existence. Often, the data also exhibits strong correlations. Although there is prior work in managing and querying such probabilistic data using probabilistic databases, those approaches largely assume independence and cannot handle probabilistic data with rich correlation structures. Hence, I built a probabilistic database system that can manage large-scale correlations and developed algorithms for efficient query evaluation. Our system allows users to provide uncertain data as input and to specify arbitrary correlations among the entries in the database. In the back end, we represent correlations as a forest of junction trees, an alternative representation for probabilistic graphical models (PGM). We execute queries over the probabilistic database by transforming them into message passing algorithms (inference) over the junction tree. However, traditional algorithms over junction trees typically require accessing the entire tree, even for small queries. Hence, I developed an index data structure over the junction tree called INDSEP that allows us to circumvent this process and thereby scalably evaluate inference queries, aggregation queries and SQL queries over the probabilistic database. Finally, query evaluation in probabilistic databases typically returns output tuples along with their probability values. However, the existing query evaluation model provides very little intuition to the users: for instance, a user might want to know Why is this tuple in my result? or Why does this output tuple have such high probability? or Which are the most influential input tuples for my query ?'' Hence, I designed a query evaluation model, and a suite of algorithms, that provide users with explanations for query results, and enable users to perform sensitivity analysis to better understand the query results

    Provenance Circuits for Trees and Treelike Instances (Extended Version)

    Full text link
    Query evaluation in monadic second-order logic (MSO) is tractable on trees and treelike instances, even though it is hard for arbitrary instances. This tractability result has been extended to several tasks related to query evaluation, such as counting query results [3] or performing query evaluation on probabilistic trees [10]. These are two examples of the more general problem of computing augmented query output, that is referred to as provenance. This article presents a provenance framework for trees and treelike instances, by describing a linear-time construction of a circuit provenance representation for MSO queries. We show how this provenance can be connected to the usual definitions of semiring provenance on relational instances [20], even though we compute it in an unusual way, using tree automata; we do so via intrinsic definitions of provenance for general semirings, independent of the operational details of query evaluation. We show applications of this provenance to capture existing counting and probabilistic results on trees and treelike instances, and give novel consequences for probability evaluation.Comment: 48 pages. Presented at ICALP'1
    corecore