1,526 research outputs found

    Guided Filtering based Pyramidal Stereo Matching for Unrectified Images

    Get PDF
    Stereo matching deals with recovering quantitative depth information from a set of input images, based on the visual disparity between corresponding points. Generally most of the algorithms assume that the processed images are rectified. As robotics becomes popular, conducting stereo matching in the context of cloth manipulation, such as obtaining the disparity map of the garments from the two cameras of the cloth folding robot, is useful and challenging. This is resulted from the fact of the high efficiency, accuracy and low memory requirement under the usage of high resolution images in order to capture the details (e.g. cloth wrinkles) for the given application (e.g. cloth folding). Meanwhile, the images can be unrectified. Therefore, we propose to adapt guided filtering algorithm into the pyramidical stereo matching framework that works directly for unrectified images. To evaluate the proposed unrectified stereo matching in terms of accuracy, we present three datasets that are suited to especially the characteristics of the task of cloth manipulations. By com- paring the proposed algorithm with two baseline algorithms on those three datasets, we demonstrate that our proposed approach is accurate, efficient and requires low memory. This also shows that rather than relying on image rectification, directly applying stereo matching through the unrectified images can be also quite effective and meanwhile efficien

    Efficient and accurate stereo matching for cloth manipulation

    Get PDF
    Due to the recent development of robotic techniques, researching robots that can assist in everyday household tasks, especially robotic cloth manipulation has become popular in recent years. Stereo matching forms a crucial part of the robotic vision and aims to derive depth information from image pairs captured by the stereo cameras. Although stereo robotic vision is widely adopted for cloth manipulation robots in the research community, this remains a challenging research task. Robotic vision requires very accurate depth output in a relatively short timespan in order to successfully perform cloth manipulation in real-time. In this thesis, we mainly aim to develop a robotic stereo matching based vision system that is both efficient and effective for the task of robotic cloth manipulation. Effectiveness refers to the accuracy of the depth map generated from the stereo matching algorithms for the robot to grasp the required details to achieve the given task on cloth materials while efficiency emphasizes the required time for the stereo matching to process the images. With respect to efficiency, firstly, by exploring a variety of different hardware architectures such as multi-core CPU and graphic processors (GPU) to accelerate stereo matching, we demonstrate that the parallelised stereo-matching algorithm can be significantly accelerated, achieving 12X and 176X speed-ups respectively for multi-core CPU and GPU, compared with SISD (Single Instruction, Single Data) single-thread CPU. In terms of effectiveness, due to the fact that there are no cloth based testbeds with depth map ground-truths for evaluating the accuracy of stereo matching performance in this context, we created five different testbeds to facilitate evaluation of stereo matching in the context of cloth manipulation. In addition, we adapted a guided filtering algorithm into a pyramidical stereo matching framework that works directly for unrectified images, and evaluate its accuracy utilizing the created cloth testbeds. We demonstrate that our proposed approach is not only efficient, but also accurate and suits well to the characteristics of the task of cloth manipulations. This also shows that rather than relying on image rectification, directly applying stereo matching to unrectified images is effective and efficient. Finally, we further explore whether we can improve efficiency while maintaining reasonable accuracy for robotic cloth manipulations (i.e.~trading off accuracy for efficiency). We use a foveated matching algorithm, inspired by biological vision systems, and found that it is effective in trading off accuracy for efficiency, achieving almost the same level of accuracy for both cloth grasping and flattening tasks with two to three fold acceleration. We also demonstrate that with the robot we can use machine learning techniques to predict the optimal foveation level in order to accomplish the robotic cloth manipulation tasks successfully and much more efficiently. To summarize, in this thesis, we extensively study stereo matching, contributing to the long-term goal of developing effective ways for efficient whilst accurate robotic stereo matching for cloth manipulation

    Acceleration of stereo-matching on multi-core CPU and GPU

    Get PDF
    This paper presents an accelerated version of a dense stereo-correspondence algorithm for two different parallelism enabled architectures, multi-core CPU and GPU. The algorithm is part of the vision system developed for a binocular robot-head in the context of the CloPeMa 1 research project. This research project focuses on the conception of a new clothes folding robot with real-time and high resolution requirements for the vision system. The performance analysis shows that the parallelised stereo-matching algorithm has been significantly accelerated, maintaining 12x and 176x speed-up respectively for multi-core CPU and GPU, compared with non-SIMD singlethread CPU. To analyse the origin of the speed-up and gain deeper understanding about the choice of the optimal hardware, the algorithm was broken into key sub-tasks and the performance was tested for four different hardware architectures

    Single-Shot Clothing Category Recognition in Free-Configurations with Application to Autonomous Clothes Sorting

    Get PDF
    This paper proposes a single-shot approach for recognising clothing categories from 2.5D features. We propose two visual features, BSP (B-Spline Patch) and TSD (Topology Spatial Distances) for this task. The local BSP features are encoded by LLC (Locality-constrained Linear Coding) and fused with three different global features. Our visual feature is robust to deformable shapes and our approach is able to recognise the category of unknown clothing in unconstrained and random configurations. We integrated the category recognition pipeline with a stereo vision system, clothing instance detection, and dual-arm manipulators to achieve an autonomous sorting system. To verify the performance of our proposed method, we build a high-resolution RGBD clothing dataset of 50 clothing items of 5 categories sampled in random configurations (a total of 2,100 clothing samples). Experimental results show that our approach is able to reach 83.2\% accuracy while classifying clothing items which were previously unseen during training. This advances beyond the previous state-of-the-art by 36.2\%. Finally, we evaluate the proposed approach in an autonomous robot sorting system, in which the robot recognises a clothing item from an unconstrained pile, grasps it, and sorts it into a box according to its category. Our proposed sorting system achieves reasonable sorting success rates with single-shot perception.Comment: 9 pages, accepted by IROS201

    Acceleration of stereo-matching on multi-core CPU and GPU

    Get PDF
    This paper presents an accelerated version of a dense stereo-correspondence algorithm for two different parallelism enabled architectures, multi-core CPU and GPU. The algorithm is part of the vision system developed for a binocular robot-head in the context of the CloPeMa 1 research project. This research project focuses on the conception of a new clothes folding robot with real-time and high resolution requirements for the vision system. The performance analysis shows that the parallelised stereo-matching algorithm has been significantly accelerated, maintaining 12x and 176x speed-up respectively for multi-core CPU and GPU, compared with non-SIMD singlethread CPU. To analyse the origin of the speed-up and gain deeper understanding about the choice of the optimal hardware, the algorithm was broken into key sub-tasks and the performance was tested for four different hardware architectures

    Autonomous clothes manipulation using a hierarchical vision architecture

    Get PDF
    This paper presents a novel robot vision architecture for perceiving generic 3-D clothes configurations. Our architecture is hierarchically structured, starting from low-level curvature features to mid-level geometric shapes and topology descriptions, and finally, high-level semantic surface descriptions. We demonstrate our robot vision architecture in a customized dual-arm industrial robot with our inhouse developed stereo vision system, carrying out autonomous grasping and dual-arm flattening. The experimental results show the effectiveness of the proposed dual-arm flattening using the stereo vision system compared with the single-arm flattening using the widely cited Kinect-like sensor as the baseline. In addition, the proposed grasping approach achieves satisfactory performance when grasping various kind of garments, verifying the capability of the proposed visual perception architecture to be adapted to more than one clothing manipulation tasks

    Data-Driven Grasp Synthesis - A Survey

    Full text link
    We review the work on data-driven grasp synthesis and the methodologies for sampling and ranking candidate grasps. We divide the approaches into three groups based on whether they synthesize grasps for known, familiar or unknown objects. This structure allows us to identify common object representations and perceptual processes that facilitate the employed data-driven grasp synthesis technique. In the case of known objects, we concentrate on the approaches that are based on object recognition and pose estimation. In the case of familiar objects, the techniques use some form of a similarity matching to a set of previously encountered objects. Finally for the approaches dealing with unknown objects, the core part is the extraction of specific features that are indicative of good grasps. Our survey provides an overview of the different methodologies and discusses open problems in the area of robot grasping. We also draw a parallel to the classical approaches that rely on analytic formulations.Comment: 20 pages, 30 Figures, submitted to IEEE Transactions on Robotic
    • …
    corecore