13,511 research outputs found

    S-Mbank: Secure Mobile Banking Authentication Scheme Using Signcryption, Pair Based Text Authentication, and Contactless Smartcard

    Get PDF
    Nowadays, mobile banking becomes a popular tool which consumers can conduct financial transactions such as shopping, monitoring accounts balance, transferring funds and other payments. Consumers dependency on mobile needs, make people take a little bit more interest in mobile banking. The use of the one-time password which is sent to the user mobile phone by short message service (SMS) is a vulnerability which we want to solve with proposing a new scheme called S-Mbank. We replace the authentication using the one-time password with the contactless smart card to prevent attackers to use the unencrypted message which is sent to the user's mobile phone. Moreover, it deals vulnerability of spoofer to send an SMS pretending as a bank's server. The contactless smart card is proposed because of its flexibility and security which easier to bring in our wallet than the common passcode generators. The replacement of SMS-based authentication with contactless smart card removes the vulnerability of unauthorized users to act as a legitimate user to exploit the mobile banking user's account. Besides that, we use public-private key pair and PIN to provide two factors authentication and mutual authentication. We use signcryption scheme to provide the efficiency of the computation. Pair based text authentication is also proposed for the login process as a solution to shoulder-surfing attack. We use Scyther tool to analyze the security of authentication protocol in S-Mbank scheme. From the proposed scheme, we are able to provide more security protection for mobile banking service.Comment: 6 page

    e-SAFE: Secure, Efficient and Forensics-Enabled Access to Implantable Medical Devices

    Full text link
    To facilitate monitoring and management, modern Implantable Medical Devices (IMDs) are often equipped with wireless capabilities, which raise the risk of malicious access to IMDs. Although schemes are proposed to secure the IMD access, some issues are still open. First, pre-sharing a long-term key between a patient's IMD and a doctor's programmer is vulnerable since once the doctor's programmer is compromised, all of her patients suffer; establishing a temporary key by leveraging proximity gets rid of pre-shared keys, but as the approach lacks real authentication, it can be exploited by nearby adversaries or through man-in-the-middle attacks. Second, while prolonging the lifetime of IMDs is one of the most important design goals, few schemes explore to lower the communication and computation overhead all at once. Finally, how to safely record the commands issued by doctors for the purpose of forensics, which can be the last measure to protect the patients' rights, is commonly omitted in the existing literature. Motivated by these important yet open problems, we propose an innovative scheme e-SAFE, which significantly improves security and safety, reduces the communication overhead and enables IMD-access forensics. We present a novel lightweight compressive sensing based encryption algorithm to encrypt and compress the IMD data simultaneously, reducing the data transmission overhead by over 50% while ensuring high data confidentiality and usability. Furthermore, we provide a suite of protocols regarding device pairing, dual-factor authentication, and accountability-enabled access. The security analysis and performance evaluation show the validity and efficiency of the proposed scheme

    Secure Identification in Social Wireless Networks

    Get PDF
    The applications based on social networking have brought revolution towards social life and are continuously gaining popularity among the Internet users. Due to the advanced computational resources offered by the innovative hardware and nominal subscriber charges of network operators, most of the online social networks are transforming into the mobile domain by offering exciting applications and games exclusively designed for users on the go. Moreover, the mobile devices are considered more personal as compared to their desktop rivals, so there is a tendency among the mobile users to store sensitive data like contacts, passwords, bank account details, updated calendar entries with key dates and personal notes on their devices. The Project Social Wireless Network Secure Identification (SWIN) is carried out at Swedish Institute of Computer Science (SICS) to explore the practicality of providing the secure mobile social networking portal with advanced security features to tackle potential security threats by extending the existing methods with more innovative security technologies. In addition to the extensive background study and the determination of marketable use-cases with their corresponding security requirements, this thesis proposes a secure identification design to satisfy the security dimensions for both online and offline peers. We have implemented an initial prototype using PHP Socket and OpenSSL library to simulate the secure identification procedure based on the proposed design. The design is in compliance with 3GPP‟s Generic Authentication Architecture (GAA) and our implementation has demonstrated the flexibility of the solution to be applied independently for the applications requiring secure identification. Finally, the thesis provides strong foundation for the advanced implementation on mobile platform in future

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio
    • …
    corecore