285 research outputs found

    Design and Development of Smart Brain-Machine-Brain Interface (SBMIBI) for Deep Brain Stimulation and Other Biomedical Applications

    Get PDF
    Machine collaboration with the biological body/brain by sending electrical information back and forth is one of the leading research areas in neuro-engineering during the twenty-first century. Hence, Brain-Machine-Brain Interface (BMBI) is a powerful tool for achieving such machine-brain/body collaboration. BMBI generally is a smart device (usually invasive) that can record, store, and analyze neural activities, and generate corresponding responses in the form of electrical pulses to stimulate specific brain regions. The Smart Brain-Machine-Brain-Interface (SBMBI) is a step forward with compared to the traditional BMBI by including smart functions, such as in-electrode local computing capabilities, and availability of cloud connectivity in the system to take the advantage of powerful cloud computation in decision making. In this dissertation work, we designed and developed an innovative form of Smart Brain-Machine-Brain Interface (SBMBI) and studied its feasibility in different biomedical applications. With respect to power management, the SBMBI is a semi-passive platform. The communication module is fully passive—powered by RF harvested energy; whereas, the signal processing core is battery-assisted. The efficiency of the implemented RF energy harvester was measured to be 0.005%. One of potential applications of SBMBI is to configure a Smart Deep-Brain-Stimulator (SDBS) based on the general SBMBI platform. The SDBS consists of brain-implantable smart electrodes and a wireless-connected external controller. The SDBS electrodes operate as completely autonomous electronic implants that are capable of sensing and recording neural activities in real time, performing local processing, and generating arbitrary waveforms for neuro-stimulation. A bidirectional, secure, fully-passive wireless communication backbone was designed and integrated into this smart electrode to maintain contact between the smart electrodes and the controller. The standard EPC-Global protocol has been modified and adopted as the communication protocol in this design. The proposed SDBS, by using a SBMBI platform, was demonstrated and tested through a hardware prototype. Additionally the SBMBI was employed to develop a low-power wireless ECG data acquisition device. This device captures cardiac pulses through a non-invasive magnetic resonance electrode, processes the signal and sends it to the backend computer through the SBMBI interface. Analysis was performed to verify the integrity of received ECG data

    An Experimental Study of Reduced-Voltage Operation in Modern FPGAs for Neural Network Acceleration

    Get PDF
    We empirically evaluate an undervolting technique, i.e., underscaling the circuit supply voltage below the nominal level, to improve the power-efficiency of Convolutional Neural Network (CNN) accelerators mapped to Field Programmable Gate Arrays (FPGAs). Undervolting below a safe voltage level can lead to timing faults due to excessive circuit latency increase. We evaluate the reliability-power trade-off for such accelerators. Specifically, we experimentally study the reduced-voltage operation of multiple components of real FPGAs, characterize the corresponding reliability behavior of CNN accelerators, propose techniques to minimize the drawbacks of reduced-voltage operation, and combine undervolting with architectural CNN optimization techniques, i.e., quantization and pruning. We investigate the effect of environmental temperature on the reliability-power trade-off of such accelerators. We perform experiments on three identical samples of modern Xilinx ZCU102 FPGA platforms with five state-of-the-art image classification CNN benchmarks. This approach allows us to study the effects of our undervolting technique for both software and hardware variability. We achieve more than 3X power-efficiency (GOPs/W) gain via undervolting. 2.6X of this gain is the result of eliminating the voltage guardband region, i.e., the safe voltage region below the nominal level that is set by FPGA vendor to ensure correct functionality in worst-case environmental and circuit conditions. 43% of the power-efficiency gain is due to further undervolting below the guardband, which comes at the cost of accuracy loss in the CNN accelerator. We evaluate an effective frequency underscaling technique that prevents this accuracy loss, and find that it reduces the power-efficiency gain from 43% to 25%.Comment: To appear at the DSN 2020 conferenc

    Future Internet of Things: Connecting the Unconnected World and Things Based on 5/6G Networks and Embedded Technologies

    Get PDF
    Undeniably, the Internet of Things (IoT) ecosystem keeps on advancing at a fast speed, far above all predictions for growth and ubiquity. From sensor to cloud, this massive network continues to break technical limits in a variety of ways, and wireless sensor nodes are likely to become more prevalent as the number of Internet of Things devices increases into the trillions to connect the world and unconnected objects. However, their future in the IoT ecosystem remains uncertain, as various difficulties as with device connectivity, edge artificial intelligence (AI), security and privacy concerns, increased energy demands, the right technologies to use, and continue to attract opposite forces. This chapter provides a brief, forward-looking overview of recent trends, difficulties, and cutting-edge solutions for low-end IoT devices that use reconfigurable computing technologies like FPGA SoC and next-generation 5/6G networks. Tomorrow’s IoT devices will play a critical role. At the end of this chapter, an edge FPGA SoC computing-based IoT application is proposed, to be a novel edge computing for IoT solution with low power consumption and accelerated processing capability in data exchange

    Internet of Things. Information Processing in an Increasingly Connected World

    Get PDF
    This open access book constitutes the refereed post-conference proceedings of the First IFIP International Cross-Domain Conference on Internet of Things, IFIPIoT 2018, held at the 24th IFIP World Computer Congress, WCC 2018, in Poznan, Poland, in September 2018. The 12 full papers presented were carefully reviewed and selected from 24 submissions. Also included in this volume are 4 WCC 2018 plenary contributions, an invited talk and a position paper from the IFIP domain committee on IoT. The papers cover a wide range of topics from a technology to a business perspective and include among others hardware, software and management aspects, process innovation, privacy, power consumption, architecture, applications

    A PUF-based cryptographic security solution for IoT systems on chip

    Get PDF
    The integration of multicore processors and peripherals from multiple intellectual property core providers as hardware components of IoT multiprocessor systems-on-chip (SoC) represents a source of security vulnerabilities for the in-chip communication. This paper describes the concept and the practical results of a SoC security implementation that is illustrative for IoT applications. The mechanism employed in this approach uses physically unclonable functions (PUF) and symmetric cryptography in order to encrypt the transferred messages within the SoC between the microprocessor and its peripherals. The mechanism is experimentally validated at FPGA level, the paper describing also an implementation scenario for an IoT ARM based device

    A microsystem design for controlling a DC motor by pulse width modulation using MicroBlaze soft-core

    Get PDF
    This paper proposes a microsystem based on the field programmable gate arrays (FPGA) electronic board. The preliminary objective is to manipulate a programming language to achieve a control part capable of controlling the speed of electric actuators, such as direct current (DC) motors. The method proposed in this work is to control the speed of the DC motor by a purely embedded architecture within the FPGA in order to reduce the space occupied by the circuit to a minimum and to ensure the reliability of the system. The implementation of this system allows the embedded MicroBlaze processor to be installed side by side with its memory blocks provided by Xilinx very high-speed integrated circuit (VHSIC) hardware description language (VHDL), Embedded C. The control signal of digital pulse-width modulation pulses is generated by an embedded block managed by the same processor. This potential application is demonstrated by experimental simulation on the Vertix5 FPGA chip

    ASCH-PUF: A "Zero" Bit Error Rate CMOS Physically Unclonable Function with Dual-Mode Low-Cost Stabilization

    Full text link
    Physically unclonable functions (PUFs) are increasingly adopted for low-cost and secure secret key and chip ID generations for embedded and IoT devices. Achieving 100% reproducible keys across wide temperature and voltage variations over the lifetime of a device is critical and conventionally requires large masking or Error Correction Code (ECC) overhead to guarantee. This paper presents an Automatic Self Checking and Healing (ASCH) stabilization technique for a state-of-the-art PUF cell design based on sub-threshold inverter chains. The ASCH system successfully removes all unstable PUF cells without the need for expensive temperature sweeps during unstable bit detection. By accurately finding all unstable bits without expensive temperature sweeps to find all unstable bits, ASCH achieves ultra-low bit error rate (BER), thus significantly reducing the costs of using ECC and enrollment. Our ASCH can operate in two modes, a static mode (S-ASCH) with a conventional pre-enrolled unstable bit mask and a dynamic mode (D-ASCH) that further eliminates the need for non-volatile memories (NVMs) for storing masks. The proposed ASCH-PUF is fabricated and evaluated in 65nm CMOS. The ASCH system achieves "0" Bit Error Rate (BER, < 1.77E-9) across temperature variations of -20{\deg}C to 125{\deg}C, and voltage variations of 0.7V to 1.4V, by masking 31% and 35% of all fabricated PUF bits in S-ASCH and D-ASCH mode respectively. The prototype achieves a measured throughput of 11.4 Gbps with 0.057 fJ/b core energy efficiency at 1.2V, 25{\deg}C.Comment: This paper has been accepted to IEEE Journal of Solid-State Circuits (JSSC

    An Input Power-Aware Maximum Efficiency Tracking Technique for Energy Harvesting in IoT Applications

    Get PDF
    The Internet of Things (IoT) enables intelligent monitoring and management in many applications such as industrial and biomedical systems as well as environmental and infrastructure monitoring. As a result, IoT requires billions of wireless sensor network (WSN) nodes equipped with a microcontroller and transceiver. As many of these WSN nodes are off-grid and small-sized, their limited-capacity batteries need periodic replacement. To mitigate the high costs and challenges of these battery replacements, energy harvesting from ambient sources is vital to achieve energy-autonomous operation. Energy harvesting for WSNs is challenging because the available energy varies significantly with ambient conditions and in many applications, energy must be harvested from ultra-low power levels. To tackle these stringent power constraints, this dissertation proposes a discontinuous charging technique for switched-capacitor converters that improves the power conversion efficiency (PCE) at low input power levels and extends the input power harvesting range at which high PCE is achievable. Discontinuous charging delivers current to energy storage only during clock non-overlap time. This enables tuning of the output current to minimize converter losses based on the available input power. Based on this fundamental result, an input power-aware, two-dimensional efficiency tracking technique for WSNs is presented. In addition to conventional switching frequency control, clock nonoverlap time control is introduced to adaptively optimize the power conversion efficiency according to the sensed ambient power levels. The proposed technique is designed and simulated in 90nm CMOS with post-layout extraction. Under the same input and output conditions, the proposed system maintains at least 45% PCE at 4ÎĽW input power, as opposed to a conventional continuous system which requires at least 18.7ÎĽW to maintain the same PCE. In this technique, the input power harvesting range is extended by 1.5x. The technique is applied to a WSN implementation utilizing the IEEE 802.15.4- compatible GreenNet communications protocol for industrial and wearable applications. This allows the node to meet specifications and achieve energy autonomy when deployed in harsher environments where the input power is 49% lower than what is required for conventional operation
    • …
    corecore