1,835 research outputs found

    Efficient unknown tag identification protocols in large-scale RFID systems

    Get PDF
    PublishedJournal ArticleOwing to its attractive features such as fast identification and relatively long interrogating range over the classical barcode systems, radio-frequency identification (RFID) technology possesses a promising prospect in many practical applications such as inventory control and supply chain management. However, unknown tags appear in RFID systems when the tagged objects are misplaced or unregistered tagged objects are moved in, which often causes huge economic losses. This paper addresses an important and challenging problem of unknown tag identification in large-scale RFID systems. The existing protocols leverage the Aloha-like schemes to distinguish the unknown tags from known tags at the slot level, which are of low time-efficiency, and thus can hardly satisfy the delay-sensitive applications. To fill in this gap, two filtering-based protocols (at the bit level) are proposed in this paper to address the problem of unknown tag identification efficiently. Theoretical analysis of the protocol parameters is performed to minimize the execution time of the proposed protocols. Extensive simulation experiments are conducted to evaluate the performance of the protocols. The results demonstrate that the proposed protocols significantly outperform the currently most promising protocols.This work was supported by NSFC (Grant Nos. 60973117, 61173160, 61173162, and 60903154), New Century Excellent Talents in University (NCET) of Ministry of Education of China, The Research Fund for the Doctoral Program of Higher Education (Program No. 20130041110019) and the National Science Foundation for Distinguished Young Scholars of China (Grant No. 61225010)

    A Review on Missing Tags Detection Approaches in RFID System

    Get PDF
    Radio Frequency Identification (RFID) system can provides automatic detection on very large number of tagged objects within short time. With this advantage, it is been using in many areas especially in the supply chain management, manufacturing and many others. It has the ability to track individual object all away from the manufacturing factory until it reach the retailer store. However, due to its nature that depends on radio signal to do the detection, reading on tagged objects can be missing due to the signal lost. The signal lost can be caused by weak signal, interference and unknown source. Missing tag detection in RFID system is truly significant problem, because it makes system reporting becoming useless, due to the misleading information generated from the inaccurate readings. The missing detection also can invoke fake alarm on theft, or object left undetected and unattended for some period. This paper provides review regarding this issue and compares some of the proposed approaches including Window Sub-range Transition Detection (WSTD), Efficient Missing-Tag Detection Protocol (EMD) and Multi-hashing based Missing Tag Identification (MMTI) protocol. Based on the reviews it will give insight on the current challenges and open up for a new solution in solving the problem of missing tag detection

    Energy-efficient active tag searching in large scale RFID systems

    Get PDF
    Radio Frequency Identification (RFID) has attracted much research attention in recent years. RFID can support automatic information tracing and management during the management process in many fields. A typical field that uses RFID is modern warehouse management, where products are attached with tags and the inventory of products is managed by retrieving tag IDs. Many practical applications require searching a group of tags to determine whether they are in the system or not. The existing studies on tag searching mainly focused on improving the time efficiency but paid little attention to energy efficiency which is extremely important for active tags powered by built-in batteries. To fill in this gap, this paper investigates the tag searching problem from the energy efficiency perspective. We first propose an Energy-efficient tag Searching protocol in Multiple reader RFID systems, namely ESiM, which pushes per tag energy consumption to the limit as each tag needs to exchange only one bit data with the reader. We then develop a time efficiency enhanced version of ESiM, namely TESiM, which can dramatically reduce the execution time while only slightly increasing the transmission overhead. Extensive simulation experiments reveal that, compared to state-of-the-art solution in the current literature, TESiM reduces per tag energy consumption by more than one order of magnitude subject to comparable execution time. In most considered scenarios, TESiM even reduces the execution time by more than 50%.This work is partially supported by the National Science Foundation of China (Grant Nos. 61103203, 61332004, 61402056 and 61420106009), NSFC/RGC Joint Research Scheme (Grant No. N_PolyU519/12), and the EU FP7 CLIMBER project (Grant Agreement No. PIRSES-GA-2012-318939)

    Missing tags detection algorithm for radio frequency identification (RFID) data stream

    Get PDF
    RFID technology is a radio frequency identification services that provide a reader reading the information of items from the tags. Nowadays, RFID system is rapidly become more common in our live because it cheaper and smaller to be track, trace and identify the items. However, missing tag detection in RFID can occur due to RFID operating environment such as signal collisions and interferences. Missing tags also called as false negative reads is a tag that is present but it cannot be read by the nearby reader. The consequences of this problem can be enormous to business, as it will cause the system to report incorrect data due to an incorrect number of tags being detected. In fact, the performance of RFID missing tag detection is largely affected by uncertainty, which should be considered in the detecting process phase to minimize its negative impact. Thus in this research, an AC complement algorithm with hashing algorithm and Detect False Negative Read algorithm (DFR) is used to developed the Missing Tags Detection Algorithm (MTDA). AC complement algorithm was used to compare the different in each set of data. Meanwhile, DFR algorithm was used to identify the false negative read that present in the set of data. There are many approaches has been proposed to include Window Sub-range Transition Detection (WSTD), Efficient Missing-Tag Detection Protocol (EMD) and Multi-hashing based Missing Tag Identification (MMTI) protocol. This algorithm development has been guided by methodology in four stages. There stages including data preparation, simulation design, detecting false negative read strategy and performance measurement. MTDA can perform well in detecting false negative read with 100% detected in 3.25 second. This performance shows that the algorithm performs well in execution time in detecting false negative reads. In conclusion, it will give insight on the current challenges and open up to new solution to solve the problem of missing tag detection

    PLACE: Physical Layer Cardinality Estimation for Large-Scale RFID Systems

    Full text link

    Building efficient wireless infrastructures for pervasive computing environments

    Get PDF
    Pervasive computing is an emerging concept that thoroughly brings computing devices and the consequent technology into people\u27s daily life and activities. Most of these computing devices are very small, sometimes even invisible , and often embedded into the objects surrounding people. In addition, these devices usually are not isolated, but networked with each other through wireless channels so that people can easily control and access them. In the architecture of pervasive computing systems, these small and networked computing devices form a wireless infrastructure layer to support various functionalities in the upper application layer.;In practical applications, the wireless infrastructure often plays a role of data provider in a query/reply model, i.e., applications issue a query requesting certain data and the underlying wireless infrastructure is responsible for replying to the query. This dissertation has focused on the most critical issue of efficiency in designing such a wireless infrastructure. In particular, our problem resides in two domains depending on different definitions of efficiency. The first definition is time efficiency, i.e., how quickly a query can be replied. Many applications, especially real-time applications, require prompt response to a query as the consequent operations may be affected by the prior delay. The second definition is energy efficiency which is extremely important for the pervasive computing devices powered by batteries. Above all, our design goal is to reply to a query from applications quickly and with low energy cost.;This dissertation has investigated two representative wireless infrastructures, sensor networks and RFID systems, both of which can serve applications with useful information about the environments. We have comprehensively explored various important and representative problems from both algorithmic and experimental perspectives including efficient network architecture design and efficient protocols for basic queries and complicated data mining queries. The major design challenges of achieving efficiency are the massive amount of data involved in a query and the extremely limited resources and capability each small device possesses. We have proposed novel and efficient solutions with intensive evaluation. Compared to the prior work, this dissertation has identified a few important new problems and the proposed solutions significantly improve the performance in terms of time efficiency and energy efficiency. Our work also provides referrable insights and appropriate methodology to other similar problems in the research community

    Information- and Material Flows in Warehouse Management: A Case Study

    Get PDF

    Potential of RFID technology in logistics - Case Metso Paper -

    Get PDF
    Viime vuosina palveluliiketoiminnan merkitys ydinosaamista tukevana prosessina on kasvanut merkittävästi. Metso Paperin ydinosaamista on paperikoneiden valmistus mutta Service liiketoimintaan panostetaan vahvasti ja siltä odotetaan kasvua. Tällä osa-alueella logistiikalla ja etenkin materiaalin tunnistamisella on iso vaikutus prosessien tehokkuuteen. Viivakoodi on yleisesti ollut hallitseva automaattisen tunnistamisen menetelmä mutta sillä on omat rajoituksensa. RFID:llä nämä rajoitukset voidaan voittaa. Standardisoinnin sekä teknisen kehityksen ansiosta se on nopeasti noussut vaihtoehtoiseksi menetelmäksi tehostaa logistiikkaa. Siksi Metso Paper Service on nähnyt RFID tutkimuksen tarpeelliseksi. Tämän Pro Gradu tutkimuksen tarkoitus on selvittää voidaanko RFID:llä tehostaa Metso Paper Servicen nimettyjä prosesseja. Tavoitteena on tunnistaa ne prosessit joissa RFID:llä voitaisiin saavuttaa liiketoiminnallisia parannuksia ja kustannussäästöjä nykyiseen toimintamalliin verrattuna. Tutkimus on toteutettu haastattelemalla avainhenkilöitä teema kysymyksillä 8:sta toimeksiantajan nimeämästä prosessista. Haastattelun ja tilastollisen aineiston perusteella nykyiset toimintamallit ja materiaalin tunnistamiseen liittyvät oleelliset asiat on kuvattu prosessikarttoineen. Lisäksi teoriaosa esittelee RFID tekniikan pääosin tasolla, jonka käyttäjän on hyvä tietää. Tältä pohjalta on analysoitu pystytäänkö RFID:n avulla tehostamaan prosessin toimintaa. Tutkimuksessa havaittiin että useampi prosessi kehittyisi jollakin tavalla RFID:stä mutta toteutettavuus ja saavutettavan hyödyn määrä vaihtelevat. Kuitenkin yksi prosessi muodostui muita selvästi sopivammaksi. Tutkimuksen viimeisessä osassa on selvitetty RFID:n tarkemmat toiminnalliset sekä taloudelliset vaikutukset tähän prosessiin, niin tarkasti kuin se etukäteen on mahdollista. Lopputuloksena päädyttiin suosittelemaan RFID pilottiprojektia suomalaisten asiakkaiden kanssa.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format
    corecore