591 research outputs found

    Object Distribution Networks for World-wide Document Circulation

    Get PDF
    This paper presents an Object Distribution System (ODS), a distributed system inspired by the ultra-large scale distribution models used in everyday life (e.g. food or newspapers distribution chains). Beyond traditional mechanisms of approaching information to readers (e.g. caching and mirroring), this system enables the publication, classification and subscription to volumes of objects (e.g. documents, events). Authors submit their contents to publication agents. Classification authorities provide classification schemes to classify objects. Readers subscribe to topics or authors, and retrieve contents from their local delivery agent (like a kiosk or library, with local copies of objects). Object distribution is an independent process where objects circulate asynchronously among distribution agents. ODS is designed to perform specially well in an increasingly populated, widespread and complex Internet jungle, using weak consistency replication by object distribution, asynchronous replication, and local access to objects by clients. ODS is based on two independent virtual networks, one dedicated to the distribution (replication) of objects and the other to calculate optimised distribution chains to be applied by the first network

    Emergent structure in unstructured epidemic multicast

    Get PDF
    In epidemic or gossip-based multicast protocols, each node simply relays each message to some random neighbors, such that all destinations receive it at least once with high proba- bility. In sharp contrast, structured multicast protocols explicitly build and use a spanning tree to take advantage of efficient paths, and aim at having each message received exactly once. Unfortunately, when failures occur, the tree must be rebuilt. Gossiping thus provides simplicity and resilience at the expense of performance and resource efficiency. In this paper we propose a novel technique that exploits knowledge about the environment to schedule payload transmission when gossiping. The resulting protocol retains the desirable qualities of gossip, but approximates the performance of structured multicast. In some sense, instead of imposing structure by construction, we let it emerge from the operation of the gossip protocol. Experimental evaluation shows that this approach is effective even when knowledge about the environment is only approximate.(undefined

    A Survey on Wireless Sensor Network Security

    Full text link
    Wireless sensor networks (WSNs) have recently attracted a lot of interest in the research community due their wide range of applications. Due to distributed nature of these networks and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. This problem is more critical if the network is deployed for some mission-critical applications such as in a tactical battlefield. Random failure of nodes is also very likely in real-life deployment scenarios. Due to resource constraints in the sensor nodes, traditional security mechanisms with large overhead of computation and communication are infeasible in WSNs. Security in sensor networks is, therefore, a particularly challenging task. This paper discusses the current state of the art in security mechanisms for WSNs. Various types of attacks are discussed and their countermeasures presented. A brief discussion on the future direction of research in WSN security is also included.Comment: 24 pages, 4 figures, 2 table

    Furthering media independence mechanisms for Future Internet enablement

    Get PDF
    The utilization of Media Independent Handover (MIH) mechanisms, such as the ones provided by the IEEE802.21 standard, allow the abstraction of control and information querying primitives of different wireless access technologies, using a common interface. This not only simplifies the design of high-level entities interfacing with said technologies, but by providing a transport protocol for that interface, such primitives can be used to extend controlling mechanisms towards remote entities. However, the standard only employs such flexible and abstraction capabilities towards handover optimization and facilitation scenarios. In this paper, we take advantage of the flexible design of the MIH mechanisms, and propose evolutions over their base design, allowing their integration into the areas of Internet Multimedia Optimization and the Internet of Things

    Energy Efficient Downstream Communication in Wireless Sensor Networks

    Get PDF
    This dissertation studies the problem of energy efficient downstream communication in Wireless Sensor Networks (WSNs). First, we present the Opportunistic Source Routing (OSR), a scalable, reliable, and energy-efficient downward routing protocol for individual node actuation in data collection WSNs. OSR introduces opportunistic routing into traditional source routing based on the parent set of a node’s upward routing in data collection, significantly addressing the drastic link dynamics in low-power and lossy WSNs. We devise a novel adaptive Bloom filter mechanism to effectively and efficiently encode a downward source-route in OSR, which enables a significant reduction of the length of source-route field in the packet header. OSR is scalable to very large-size WSN deployments, since each resource-constrained node in the network stores only the set of its direct children. The probabilistic nature of the Bloom filter passively explores opportunistic routing. Upon a delivery failure at any hop along the downward path, OSR actively performs opportunistic routing to bypass the obsolete/bad link. The evaluations in both simulations and real-world testbed experiments demonstrate that OSR significantly outperforms the existing approaches in scalability, reliability, and energy efficiency. Secondly, we propose a mobile code dissemination tool for heterogeneous WSN deployments operating on low power links. The evaluation in lab experiment and a real world WSN testbed shows how our tool reduces the laborious work to reprogram nodes for updating the application. Finally, we present an empirical study of the network dynamics of an out-door heterogeneous WSN deployment and devise a benchmark data suite. The network dynamics analysis includes link level characteristics, topological characteristics, and temporal characteristics. The unique features of the benchmark data suite include the full path information and our approach to fill the missing paths based on the principle of the routing protocol

    Resilient networking in wireless sensor networks

    Get PDF
    This report deals with security in wireless sensor networks (WSNs), especially in network layer. Multiple secure routing protocols have been proposed in the literature. However, they often use the cryptography to secure routing functionalities. The cryptography alone is not enough to defend against multiple attacks due to the node compromise. Therefore, we need more algorithmic solutions. In this report, we focus on the behavior of routing protocols to determine which properties make them more resilient to attacks. Our aim is to find some answers to the following questions. Are there any existing protocols, not designed initially for security, but which already contain some inherently resilient properties against attacks under which some portion of the network nodes is compromised? If yes, which specific behaviors are making these protocols more resilient? We propose in this report an overview of security strategies for WSNs in general, including existing attacks and defensive measures. In this report we focus at the network layer in particular, and an analysis of the behavior of four particular routing protocols is provided to determine their inherent resiliency to insider attacks. The protocols considered are: Dynamic Source Routing (DSR), Gradient-Based Routing (GBR), Greedy Forwarding (GF) and Random Walk Routing (RWR)

    Pervasive service discovery in low-power and lossy networks

    Get PDF
    Pervasive Service Discovery (SD) in Low-power and Lossy Networks (LLNs) is expected to play a major role in realising the Internet of Things (IoT) vision. Such a vision aims to expand the current Internet to interconnect billions of miniature smart objects that sense and act on our surroundings in a way that will revolutionise the future. The pervasiveness and heterogeneity of such low-power devices requires robust, automatic, interoperable and scalable deployment and operability solutions. At the same time, the limitations of such constrained devices impose strict challenges regarding complexity, energy consumption, time-efficiency and mobility. This research contributes new lightweight solutions to facilitate automatic deployment and operability of LLNs. It mainly tackles the aforementioned challenges through the proposition of novel component-based, automatic and efficient SD solutions that ensure extensibility and adaptability to various LLN environments. Building upon such architecture, a first fully-distributed, hybrid pushpull SD solution dubbed EADP (Extensible Adaptable Discovery Protocol) is proposed based on the well-known Trickle algorithm. Motivated by EADPs’ achievements, new methods to optimise Trickle are introduced. Such methods allow Trickle to encompass a wide range of algorithms and extend its usage to new application domains. One of the new applications is concretized in the TrickleSD protocol aiming to build automatic, reliable, scalable, and time-efficient SD. To optimise the energy efficiency of TrickleSD, two mechanisms improving broadcast communication in LLNs are proposed. Finally, interoperable standards-based SD in the IoT is demonstrated, and methods combining zero-configuration operations with infrastructure-based solutions are proposed. Experimental evaluations of the above contributions reveal that it is possible to achieve automatic, cost-effective, time-efficient, lightweight, and interoperable SD in LLNs. These achievements open novel perspectives for zero-configuration capabilities in the IoT and promise to bring the ‘things’ to all people everywhere

    System analysis of a Peer-to-Peer Video-on-Demand architecture : Kangaroo

    Get PDF
    Architectural design and deployment of Peer-to-Peer Video-on-Demand (P2PVoD) systems which support VCR functionalities is attracting the interest of an increasing number of research groups within the scientific community; especially due to the intrinsic characteristics of such systems and the benefits that peers could provide at reducing the server load. This work focuses on the performance analysis of a P2P-VoD system considering user behaviors obtained from real traces together with other synthetic user patterns. The experiments performed show that it is feasible to achieve a performance close to the best possible. Future work will consider monitoring the physical characteristics of the network in order to improve the design of different aspects of a VoD system.El disseny arquitectĂČnic i el desplegament de sistemes de VĂ­deo sota Demanda "Peer-to-Peer" que soporten funcionalitats VCR estĂ  captant l'interĂšs d'un nombre creixent de grups de recerca a la comunitat cientĂ­fica, degut especialment a les caracterĂ­stiques intrĂ­nsiques dels mencionats sistemes i als beneficis que els peers podrien proporcionar a la reducciĂł de la cĂ rrega en el servidor. Aquest treball tracta l'anĂ lisi del rendiment d'un sistema P2P-VoD considerant el comportament d'usuaris obtingut amb traçes reals i amb patrons sintĂštics. Els experiments realitzats mostren que Ă©s viable assolir un rendiment proper al cas mĂ©s Ăłptim. Com treball futur es considerarĂ  la monitoritzaciĂł de les caracterĂ­stiques fĂ­siques de la xarxa per a poder millorar el disseny dels diferents aspectes que formen un sistema de VoD.El diseño arquitectĂłnico y el despliegue de sistemas de Video bajo Demanda "Peer-to-Peer" que soportan funcionalidades VCR estĂĄ captando el interĂ©s de un nĂșmero creciente de grupos de investigaciĂłn dentro de la comunidad cientĂ­fica; especialmente debido a las caracterĂ­sticas intrĂ­nsecas de tales sistemas y a los beneficios que los peers podrĂ­an proporcionar en la reducciĂłn de la carga en el servidor. Este trabajo se enfoca en el anĂĄlisis de rendimiento de un sistema P2PVoD considerando el comportamiento de usuarios obtenido de trazas reales, junto a otros patrones sintĂ©ticos. Los experimentos realizados muestran que es viable lograr un rendimiento cercano al caso mĂĄs Ăłptimo. El trabajo futuro considerarĂĄ la monitorizaciĂłn de las caracterĂ­sticas fĂ­sicas de la red para poder mejorar el diseño de los diferentes aspectos que conforman un sistema de VoD
    • 

    corecore