29,862 research outputs found

    On Filter Size in Graph Convolutional Networks

    Full text link
    Recently, many researchers have been focusing on the definition of neural networks for graphs. The basic component for many of these approaches remains the graph convolution idea proposed almost a decade ago. In this paper, we extend this basic component, following an intuition derived from the well-known convolutional filters over multi-dimensional tensors. In particular, we derive a simple, efficient and effective way to introduce a hyper-parameter on graph convolutions that influences the filter size, i.e. its receptive field over the considered graph. We show with experimental results on real-world graph datasets that the proposed graph convolutional filter improves the predictive performance of Deep Graph Convolutional Networks.Comment: arXiv admin note: text overlap with arXiv:1811.0693

    MLGCN: An Ultra Efficient Graph Convolution Neural Model For 3D Point Cloud Analysis

    Full text link
    The analysis of 3D point clouds has diverse applications in robotics, vision and graphics. Processing them presents specific challenges since they are naturally sparse, can vary in spatial resolution and are typically unordered. Graph-based networks to abstract features have emerged as a promising alternative to convolutional neural networks for their analysis, but these can be computationally heavy as well as memory inefficient. To address these limitations we introduce a novel Multi-level Graph Convolution Neural (MLGCN) model, which uses Graph Neural Networks (GNN) blocks to extract features from 3D point clouds at specific locality levels. Our approach employs precomputed graph KNNs, where each KNN graph is shared between GCN blocks inside a GNN block, making it both efficient and effective compared to present models. We demonstrate the efficacy of our approach on point cloud based object classification and part segmentation tasks on benchmark datasets, showing that it produces comparable results to those of state-of-the-art models while requiring up to a thousand times fewer floating-point operations (FLOPs) and having significantly reduced storage requirements. Thus, our MLGCN model could be particular relevant to point cloud based 3D shape analysis in industrial applications when computing resources are scarce

    clcNet: Improving the Efficiency of Convolutional Neural Network using Channel Local Convolutions

    Full text link
    Depthwise convolution and grouped convolution has been successfully applied to improve the efficiency of convolutional neural network (CNN). We suggest that these models can be considered as special cases of a generalized convolution operation, named channel local convolution(CLC), where an output channel is computed using a subset of the input channels. This definition entails computation dependency relations between input and output channels, which can be represented by a channel dependency graph(CDG). By modifying the CDG of grouped convolution, a new CLC kernel named interlaced grouped convolution (IGC) is created. Stacking IGC and GC kernels results in a convolution block (named CLC Block) for approximating regular convolution. By resorting to the CDG as an analysis tool, we derive the rule for setting the meta-parameters of IGC and GC and the framework for minimizing the computational cost. A new CNN model named clcNet is then constructed using CLC blocks, which shows significantly higher computational efficiency and fewer parameters compared to state-of-the-art networks, when being tested using the ImageNet-1K dataset. Source code is available at https://github.com/dqzhang17/clcnet.torch

    Exploring Context with Deep Structured models for Semantic Segmentation

    Full text link
    State-of-the-art semantic image segmentation methods are mostly based on training deep convolutional neural networks (CNNs). In this work, we proffer to improve semantic segmentation with the use of contextual information. In particular, we explore `patch-patch' context and `patch-background' context in deep CNNs. We formulate deep structured models by combining CNNs and Conditional Random Fields (CRFs) for learning the patch-patch context between image regions. Specifically, we formulate CNN-based pairwise potential functions to capture semantic correlations between neighboring patches. Efficient piecewise training of the proposed deep structured model is then applied in order to avoid repeated expensive CRF inference during the course of back propagation. For capturing the patch-background context, we show that a network design with traditional multi-scale image inputs and sliding pyramid pooling is very effective for improving performance. We perform comprehensive evaluation of the proposed method. We achieve new state-of-the-art performance on a number of challenging semantic segmentation datasets including NYUDv2NYUDv2, PASCALPASCAL-VOC2012VOC2012, CityscapesCityscapes, PASCALPASCAL-ContextContext, SUNSUN-RGBDRGBD, SIFTSIFT-flowflow, and KITTIKITTI datasets. Particularly, we report an intersection-over-union score of 77.877.8 on the PASCALPASCAL-VOC2012VOC2012 dataset.Comment: 16 pages. Accepted to IEEE T. Pattern Analysis & Machine Intelligence, 2017. Extended version of arXiv:1504.0101
    • …
    corecore