40,066 research outputs found

    MinoanER: Schema-Agnostic, Non-Iterative, Massively Parallel Resolution of Web Entities

    Get PDF
    Entity Resolution (ER) aims to identify different descriptions in various Knowledge Bases (KBs) that refer to the same entity. ER is challenged by the Variety, Volume and Veracity of entity descriptions published in the Web of Data. To address them, we propose the MinoanER framework that simultaneously fulfills full automation, support of highly heterogeneous entities, and massive parallelization of the ER process. MinoanER leverages a token-based similarity of entities to define a new metric that derives the similarity of neighboring entities from the most important relations, as they are indicated only by statistics. A composite blocking method is employed to capture different sources of matching evidence from the content, neighbors, or names of entities. The search space of candidate pairs for comparison is compactly abstracted by a novel disjunctive blocking graph and processed by a non-iterative, massively parallel matching algorithm that consists of four generic, schema-agnostic matching rules that are quite robust with respect to their internal configuration. We demonstrate that the effectiveness of MinoanER is comparable to existing ER tools over real KBs exhibiting low Variety, but it outperforms them significantly when matching KBs with high Variety.Comment: Presented at EDBT 2001

    All-optical cooling of Fermi gases via Pauli inhibition of spontaneous emission

    Get PDF
    A technique is proposed to cool Fermi gases to the regime of quantum degeneracy based on the expected inhibition of spontaneous emission due to the Pauli principle. The reduction of the linewidth for spontaneous emission originates a corresponding reduction of the Doppler temperature, which under specific conditions may give rise to a runaway process through which fermions are progressively cooled. The approach requires a combination of a magneto-optical trap as a cooling system and an optical dipole trap to enhance quantum degeneracy. This results in expected Fermi degeneracy factors T/TFT/T_F comparable to the lowest values recently achieved, with potential for a direct implementation in optical lattices. The experimental demonstration of this technique should also indirectly provide a macroscopic manifestation of the Pauli exclusion principle at the atomic physics level

    End-to-End Entity Resolution for Big Data: A Survey

    Get PDF
    One of the most important tasks for improving data quality and the reliability of data analytics results is Entity Resolution (ER). ER aims to identify different descriptions that refer to the same real-world entity, and remains a challenging problem. While previous works have studied specific aspects of ER (and mostly in traditional settings), in this survey, we provide for the first time an end-to-end view of modern ER workflows, and of the novel aspects of entity indexing and matching methods in order to cope with more than one of the Big Data characteristics simultaneously. We present the basic concepts, processing steps and execution strategies that have been proposed by different communities, i.e., database, semantic Web and machine learning, in order to cope with the loose structuredness, extreme diversity, high speed and large scale of entity descriptions used by real-world applications. Finally, we provide a synthetic discussion of the existing approaches, and conclude with a detailed presentation of open research directions

    Progressive Entity Resolution with Node Embeddings

    Get PDF
    Entity Resolution (ER) is the task of finding records that refer to the same real-world entity, which are called matches. ER is a fundamental pre-processing step when dealing with dirty and/or heterogeneous datasets; however, it can be very time-consuming when employing complex machine learning models to detect matches, as state-of-the-art ER methods do. Thus, when time is a critical component and having a partial ER result is better than having no result at all, progressive ER methods are employed to try to maximize the number of detected matches as a function of time. In this paper, we study how to perform progressive ER by exploiting graph embeddings. The basic idea is to represent candidate matches in a graph: each node is a record and each edge is a possible comparison to check—we build that on top of a well-known, established graph-based ER framework. We experimentally show that our method performs better than existing state-of-the-art progressive ER methods on real-world benchmark datasets
    • …
    corecore