30,250 research outputs found

    The PyCBC search for gravitational waves from compact binary coalescence

    Get PDF
    We describe the PyCBC search for gravitational waves from compact-object binary coalescences in advanced gravitational-wave detector data. The search was used in the first Advanced LIGO observing run and unambiguously identified two black hole binary mergers, GW150914 and GW151226. At its core, the PyCBC search performs a matched-filter search for binary merger signals using a bank of gravitational-wave template waveforms. We provide a complete description of the search pipeline including the steps used to mitigate the effects of noise transients in the data, identify candidate events and measure their statistical significance. The analysis is able to measure false-alarm rates as low as one per million years, required for confident detection of signals. Using data from initial LIGO's sixth science run, we show that the new analysis reduces the background noise in the search, giving a 30% increase in sensitive volume for binary neutron star systems over previous searches.Comment: 29 pages, 7 figures, accepted by Classical and Quantum Gravit

    The RRAT Trap: Interferometric Localization of Radio Pulses from J0628+0909

    Full text link
    We present the first blind interferometric detection and imaging of a millisecond radio transient with an observation of transient pulsar J0628+0909. We developed a special observing mode of the Karl G. Jansky Very Large Array (VLA) to produce correlated data products (i.e., visibilities and images) on a time scale of 10 ms. Correlated data effectively produce thousands of beams on the sky that can localize sources anywhere over a wide field of view. We used this new observing mode to find and image pulses from the rotating radio transient (RRAT) J0628+0909, improving its localization by two orders of magnitude. Since the location of the RRAT was only approximately known when first observed, we searched for transients using a wide-field detection algorithm based on the bispectrum, an interferometric closure quantity. Over 16 minutes of observing, this algorithm detected one transient offset roughly 1' from its nominal location; this allowed us to image the RRAT to localize it with an accuracy of 1.6". With a priori knowledge of the RRAT location, a traditional beamforming search of the same data found two, lower significance pulses. The refined RRAT position excludes all potential multiwavelength counterparts, limiting its optical luminosity to L_i'<1.1x10^31 erg/s and excluding its association with a young, luminous neutron star.Comment: Submitted to ApJ, 7 pages, 5 figure

    On the Evaluation of the PIPB Effect within SRAM-based FPGAs

    Get PDF
    SRAM-based FPGAs are widely used in mission critical applications. Due to the increasing working frequency and technology scaling of ultra-nanometer technology, Single Event Transients (SETs) are becoming a major source of errors for these devices. In this paper, we propose an approach for evaluating the Propagation-induced Pulse Broadening (PIPB) effect introduced by the logic resources traversed by transient pulses. The proposed methodology is applicable to any recent technology to provide SET analysis, necessary for an efficient mitigation technology. Experimental results achieved from a set of benchmarks are compared with fault injection experiments executed on a 28 nm SRAM-based FPGA to demonstrate the effectiveness of our technique

    Optical Synoptic Telescopes: New Science Frontiers

    Full text link
    Over the past decade, sky surveys such as the Sloan Digital Sky Survey have proven the power of large data sets for answering fundamental astrophysical questions. This observational progress, based on a synergy of advances in telescope construction, detectors, and information technology, has had a dramatic impact on nearly all fields of astronomy, and areas of fundamental physics. The next-generation instruments, and the surveys that will be made with them, will maintain this revolutionary progress. The hardware and computational technical challenges and the exciting science opportunities are attracting scientists and engineers from astronomy, optics, low-light-level detectors, high-energy physics, statistics, and computer science. The history of astronomy has taught us repeatedly that there are surprises whenever we view the sky in a new way. This will be particularly true of discoveries emerging from a new generation of sky surveys. Imaging data from large ground-based active optics telescopes with sufficient etendue can address many scientific missions simultaneously. These new investigations will rely on the statistical precision obtainable with billions of objects. For the first time, the full sky will be surveyed deep and fast, opening a new window on a universe of faint moving and distant exploding objects as well as unraveling the mystery of dark energy.Comment: 12 pages, 7 figure

    Tile or Stare? Cadence and Sky Monitoring Observing Strategies that Maximize the Number of Discovered Transients

    Get PDF
    To maximize the number of transients discovered on the sky, should sky-monitoring projects stare at one location or continually jump from location to location, tiling the sky? If tiling is preferred, what cadence maximizes the discovery rate? As sky monitoring is a growing part of astronomical observing, utilized to find such phenomena as supernovae, microlensing, and planet transits, well thought out answers to these questions are increasingly important. Answers are sky, source, and telescope dependent and should include information about the source luminosity distribution near the observation limit, the duration of variability, the nature of the dominant noise, and the magnitude of down and slew times. Usually, a critical slope of the effective cumulative transient apparent luminosity distribution (Log N - Log S) at the limiting magnitude will define when "tile" or "stare" is superior. For shallower slopes, when "tile" is superior, optimal cadences and pointing algorithms are discussed. For transients discovered on a single exposure or time-contiguous series of exposures, when down and slew times are small and the character of the noise is unchanged, the most productive cadence for isotropic power-law luminosity distributions is the duration of the transient -- faster cadences waste time re-discovering known transients, while slower cadences neglect transients occurring in other fields. A "cadence creep" strategy might find an optimal discovery cadence experimentally when one is not uniquely predetermined theoretically. Guest investigator programs might diversify previously dedicated sky monitoring telescopes by implementing bandpasses and cadences chosen to optimize the discovery of different types of transients. Example analyses are given for SuperMACHO, LSST, and GLAST.Comment: 28 pages, 4 figures. Accepted to Astronomical Journal. Mission specific correspondence welcome (to [email protected]

    All Transients, All the Time: Real-Time Radio Transient Detection with Interferometric Closure Quantities

    Full text link
    We demonstrate a new technique for detecting radio transients based on interferometric closure quantities. The technique uses the bispectrum, the product of visibilities around a closed-loop of baselines of an interferometer. The bispectrum is calibration independent, resistant to interference, and computationally efficient, so it can be built into correlators for real-time transient detection. Our technique could find celestial transients anywhere in the field of view and localize them to arcsecond precision. At the Karl G. Jansky Very Large Array (VLA), such a system would have a high survey speed and a 5-sigma sensitivity of 38 mJy on 10 ms timescales with 1 GHz of bandwidth. The ability to localize dispersed millisecond pulses to arcsecond precision in large volumes of interferometer data has several unique science applications. Localizing individual pulses from Galactic pulsars will help find X-ray counterparts that define their physical properties, while finding host galaxies of extragalactic transients will measure the electron density of the intergalactic medium with a single dispersed pulse. Exoplanets and active stars have distinct millisecond variability that can be used to identify them and probe their magnetospheres. We use millisecond time scale visibilities from the Allen Telescope Array (ATA) and VLA to show that the bispectrum can detect dispersed pulses and reject local interference. The computational and data efficiency of the bispectrum will help find transients on a range of time scales with next-generation radio interferometers.Comment: Accepted to ApJ. 8 pages, 5 figures, 2 tables. Revised to include discussion of non-Gaussian statistics of techniqu

    Searches for radio transients

    Full text link
    Exploration of the transient Universe is an exciting and fast-emerging area within radio astronomy. Known transient phenomena range in time scales from sub-nanoseconds to years or longer, thus spanning a huge range in time domain and hinting a rich diversity in their underlying physical processes. Transient phenomena are likely locations of explosive or dynamic events and they offer tremendous potential to uncover new physics and astrophysics. A number of upcoming next-generation radio facilities and recent advances in computing and instrumentation have provided a much needed impetus for this field which has remained a relatively uncharted territory for the past several decades. In this paper we focus mainly on the class of phenomena that occur on very short time scales (i.e. from ∼\sim milliseconds to ∼\sim nanoseconds), known as {\it fast transients}, the detections of which involve considerable signal processing and data management challenges, given the high time and frequency resolutions required in their explorations, the role of propagation effects to be considered and a multitude of deleterious effects due to radio frequency interference. We will describe the techniques, strategies and challenges involved in their detections and review the world-wide efforts currently under way, both through scientific discoveries enabled by the ongoing large-scale surveys at Parkes and Arecibo, as well as technical developments involving the exploratory use of multi-element array instruments such as VLBA and GMRT. Such developments will undoubtedly provide valuable inputs as next-generation arrays such as LOFAR and ASKAP are designed and commissioned. With their wider fields of view and higher sensitivities, these instruments, and eventually the SKA, hold great potential to revolutionise this relatively nascent field, thereby opening up exciting new science avenues in astrophysics.Comment: To appear in the special issue of the Bulletin of the Astronomical Society of India on Transients at different wavelengths, eds D.J. Saikia and D.A. Green. 21 pages, 5 figures. http://www.ncra.tifr.res.in/~bas

    Exploring the Time Domain With Synoptic Sky Surveys

    Get PDF
    Synoptic sky surveys are becoming the largest data generators in astronomy, and they are opening a new research frontier, that touches essentially every field of astronomy. Opening of the time domain to a systematic exploration will strengthen our understanding of a number of interesting known phenomena, and may lead to the discoveries of as yet unknown ones. We describe some lessons learned over the past decade, and offer some ideas that may guide strategic considerations in planning and execution of the future synoptic sky surveys.Comment: Invited talk, to appear in proc. IAU SYmp. 285, "New Horizons in Time Domain Astronomy", eds. E. Griffin et al., Cambridge Univ. Press (2012). Latex file, 6 pages, style files include
    • …
    corecore