1,003,433 research outputs found

    Analysing the reliability of actuation elements in series and parallel configurations for high-redundancy actuation

    Get PDF
    A high-redundancy actuator (HRA) is an actuation system composed of a high number of actuation elements, increasing both travel and force above the capability of an individual element. This approach provides inherent fault tolerance: if one of the elements fails, the capabilities of the whole actuator may be reduced, but it retains core functionality. Many different configurations are possible, with different implications for the actuator capability and reliability. This article analyses the reliability of the HRA based on the likelihood of an unacceptable reduction in capability. The analysis of the HRA is a highly structured problem, but it does not fit into known reliability categories (such as the k-out-of-n system), and a fault-tree analysis becomes prohibitively large. Instead, a multi-state systems approach is pursued here, which provides an easy, concise and efficient reliability analysis of the HRA. The resulting probability distribution can be used to find the optimal configuration of an HRA for a given set of requirements

    Bibliographic Review on Distributed Kalman Filtering

    Get PDF
    In recent years, a compelling need has arisen to understand the effects of distributed information structures on estimation and filtering. In this paper, a bibliographical review on distributed Kalman filtering (DKF) is provided.\ud The paper contains a classification of different approaches and methods involved to DKF. The applications of DKF are also discussed and explained separately. A comparison of different approaches is briefly carried out. Focuses on the contemporary research are also addressed with emphasis on the practical applications of the techniques. An exhaustive list of publications, linked directly or indirectly to DKF in the open literature, is compiled to provide an overall picture of different developing aspects of this area

    Efficient Iterative Processing in the SciDB Parallel Array Engine

    Full text link
    Many scientific data-intensive applications perform iterative computations on array data. There exist multiple engines specialized for array processing. These engines efficiently support various types of operations, but none includes native support for iterative processing. In this paper, we develop a model for iterative array computations and a series of optimizations. We evaluate the benefits of an optimized, native support for iterative array processing on the SciDB engine and real workloads from the astronomy domain

    Feedback Control Goes Wireless: Guaranteed Stability over Low-power Multi-hop Networks

    Full text link
    Closing feedback loops fast and over long distances is key to emerging applications; for example, robot motion control and swarm coordination require update intervals of tens of milliseconds. Low-power wireless technology is preferred for its low cost, small form factor, and flexibility, especially if the devices support multi-hop communication. So far, however, feedback control over wireless multi-hop networks has only been shown for update intervals on the order of seconds. This paper presents a wireless embedded system that tames imperfections impairing control performance (e.g., jitter and message loss), and a control design that exploits the essential properties of this system to provably guarantee closed-loop stability for physical processes with linear time-invariant dynamics. Using experiments on a cyber-physical testbed with 20 wireless nodes and multiple cart-pole systems, we are the first to demonstrate and evaluate feedback control and coordination over wireless multi-hop networks for update intervals of 20 to 50 milliseconds.Comment: Accepted final version to appear in: 10th ACM/IEEE International Conference on Cyber-Physical Systems (with CPS-IoT Week 2019) (ICCPS '19), April 16--18, 2019, Montreal, QC, Canad
    • …
    corecore