2,060 research outputs found

    A comparison between numerical solutions to fractional differential equations: Adams-type predictor-corrector and multi-step generalized differential transform method

    Get PDF
    In this note, two numerical methods of solving fractional differential equations (FDEs) are briefly described, namely predictor-corrector approach of Adams-Bashforth-Moulton type and multi-step generalized differential transform method (MSGDTM), and then a demonstrating example is given to compare the results of the methods. It is shown that the MSGDTM, which is an enhancement of the generalized differential transform method, neglects the effect of non-local structure of fractional differentiation operators and fails to accurately solve the FDEs over large domains.Comment: 12 pages, 2 figure

    Analytical solution of linear ordinary differential equations by differential transfer matrix method

    Full text link
    We report a new analytical method for exact solution of homogeneous linear ordinary differential equations with arbitrary order and variable coefficients. The method is based on the definition of jump transfer matrices and their extension into limiting differential form. The approach reduces the nnth-order differential equation to a system of nn linear differential equations with unity order. The full analytical solution is then found by the perturbation technique. The important feature of the presented method is that it deals with the evolution of independent solutions, rather than its derivatives. We prove the validity of method by direct substitution of the solution in the original differential equation. We discuss the general properties of differential transfer matrices and present several analytical examples, showing the applicability of the method. We show that the Abel-Liouville-Ostogradski theorem can be easily recovered through this approach

    Reconstruction of Planar Domains from Partial Integral Measurements

    Full text link
    We consider the problem of reconstruction of planar domains from their moments. Specifically, we consider domains with boundary which can be represented by a union of a finite number of pieces whose graphs are solutions of a linear differential equation with polynomial coefficients. This includes domains with piecewise-algebraic and, in particular, piecewise-polynomial boundaries. Our approach is based on one-dimensional reconstruction method of [Bat]* and a kind of "separation of variables" which reduces the planar problem to two one-dimensional problems, one of them parametric. Several explicit examples of reconstruction are given. Another main topic of the paper concerns "invisible sets" for various types of incomplete moment measurements. We suggest a certain point of view which stresses remarkable similarity between several apparently unrelated problems. In particular, we discuss zero quadrature domains (invisible for harmonic polynomials), invisibility for powers of a given polynomial, and invisibility for complex moments (Wermer's theorem and further developments). The common property we would like to stress is a "rigidity" and symmetry of the invisible objects. * D.Batenkov, Moment inversion of piecewise D-finite functions, Inverse Problems 25 (2009) 105001Comment: Proceedings of Complex Analysis and Dynamical Systems V, 201

    Approximate computations with modular curves

    Full text link
    This article gives an introduction for mathematicians interested in numerical computations in algebraic geometry and number theory to some recent progress in algorithmic number theory, emphasising the key role of approximate computations with modular curves and their Jacobians. These approximations are done in polynomial time in the dimension and the required number of significant digits. We explain the main ideas of how the approximations are done, illustrating them with examples, and we sketch some applications in number theory

    Hyperelliptic Theta-Functions and Spectral Methods

    Full text link
    A code for the numerical evaluation of hyperelliptic theta-functions is presented. Characteristic quantities of the underlying Riemann surface such as its periods are determined with the help of spectral methods. The code is optimized for solutions of the Ernst equation where the branch points of the Riemann surface are parameterized by the physical coordinates. An exploration of the whole parameter space of the solution is thus only possible with an efficient code. The use of spectral approximations allows for an efficient calculation of all quantities in the solution with high precision. The case of almost degenerate Riemann surfaces is addressed. Tests of the numerics using identities for periods on the Riemann surface and integral identities for the Ernst potential and its derivatives are performed. It is shown that an accuracy of the order of machine precision can be achieved. These accurate solutions are used to provide boundary conditions for a code which solves the axisymmetric stationary Einstein equations. The resulting solution agrees with the theta-functional solution to very high precision.Comment: 25 pages, 12 figure
    • …
    corecore