160 research outputs found

    Line-distortion, Bandwidth and Path-length of a graph

    Full text link
    We investigate the minimum line-distortion and the minimum bandwidth problems on unweighted graphs and their relations with the minimum length of a Robertson-Seymour's path-decomposition. The length of a path-decomposition of a graph is the largest diameter of a bag in the decomposition. The path-length of a graph is the minimum length over all its path-decompositions. In particular, we show: - if a graph GG can be embedded into the line with distortion kk, then GG admits a Robertson-Seymour's path-decomposition with bags of diameter at most kk in GG; - for every class of graphs with path-length bounded by a constant, there exist an efficient constant-factor approximation algorithm for the minimum line-distortion problem and an efficient constant-factor approximation algorithm for the minimum bandwidth problem; - there is an efficient 2-approximation algorithm for computing the path-length of an arbitrary graph; - AT-free graphs and some intersection families of graphs have path-length at most 2; - for AT-free graphs, there exist a linear time 8-approximation algorithm for the minimum line-distortion problem and a linear time 4-approximation algorithm for the minimum bandwidth problem

    On the Enumeration of Minimal Dominating Sets and Related Notions

    Full text link
    A dominating set DD in a graph is a subset of its vertex set such that each vertex is either in DD or has a neighbour in DD. In this paper, we are interested in the enumeration of (inclusion-wise) minimal dominating sets in graphs, called the Dom-Enum problem. It is well known that this problem can be polynomially reduced to the Trans-Enum problem in hypergraphs, i.e., the problem of enumerating all minimal transversals in a hypergraph. Firstly we show that the Trans-Enum problem can be polynomially reduced to the Dom-Enum problem. As a consequence there exists an output-polynomial time algorithm for the Trans-Enum problem if and only if there exists one for the Dom-Enum problem. Secondly, we study the Dom-Enum problem in some graph classes. We give an output-polynomial time algorithm for the Dom-Enum problem in split graphs, and introduce the completion of a graph to obtain an output-polynomial time algorithm for the Dom-Enum problem in P6P_6-free chordal graphs, a proper superclass of split graphs. Finally, we investigate the complexity of the enumeration of (inclusion-wise) minimal connected dominating sets and minimal total dominating sets of graphs. We show that there exists an output-polynomial time algorithm for the Dom-Enum problem (or equivalently Trans-Enum problem) if and only if there exists one for the following enumeration problems: minimal total dominating sets, minimal total dominating sets in split graphs, minimal connected dominating sets in split graphs, minimal dominating sets in co-bipartite graphs.Comment: 15 pages, 3 figures, In revisio

    New geometric representations and domination problems on tolerance and multitolerance graphs

    Get PDF
    Tolerance graphs model interval relations in such a way that intervals can tolerate a certain amount of overlap without being in conflict. In one of the most natural generalizations of tolerance graphs with direct applications in the comparison of DNA sequences from different organisms, namely multitolerance graphs, two tolerances are allowed for each interval – one from the left and one from the right side. Several efficient algorithms for optimization problems that are NPhard in general graphs have been designed for tolerance and multitolerance graphs. In spite of this progress, the complexity status of some fundamental algorithmic problems on tolerance and multitolerance graphs, such as the dominating set problem, remained unresolved until now, three decades after the introduction of tolerance graphs. In this article we introduce two new geometric representations for tolerance and multitolerance graphs, given by points and line segments in the plane. Apart from being important on their own, these new representations prove to be a powerful tool for deriving both hardness results and polynomial time algorithms. Using them, we surprisingly prove that the dominating set problem can be solved in polynomial time on tolerance graphs and that it is APX-hard on multitolerance graphs, solving thus a longstanding open problem. This problem is the first one that has been discovered with a different complexity status in these two graph classes. Furthermore we present an algorithm that solves the independent dominating set problem on multitolerance graphs in polynomial time, thus demonstrating the potential of this new representation for further exploitation via sweep line algorithms

    Generalized Distance Domination Problems and Their Complexity on Graphs of Bounded mim-width

    Get PDF
    We generalize the family of (sigma, rho)-problems and locally checkable vertex partition problems to their distance versions, which naturally captures well-known problems such as distance-r dominating set and distance-r independent set. We show that these distance problems are XP parameterized by the structural parameter mim-width, and hence polynomial on graph classes where mim-width is bounded and quickly computable, such as k-trapezoid graphs, Dilworth k-graphs, (circular) permutation graphs, interval graphs and their complements, convex graphs and their complements, k-polygon graphs, circular arc graphs, complements of d-degenerate graphs, and H-graphs if given an H-representation. To supplement these findings, we show that many classes of (distance) (sigma, rho)-problems are W[1]-hard parameterized by mim-width + solution size
    • …
    corecore