73,962 research outputs found

    Improving machine dynamics via geometry optimization

    No full text
    The central thesis of this paper is that the dynamic performance of machinery can be improved dramatically in certain cases through a systematic and meticulous evolutionary algorithm search through the space of all structural geometries permitted by manufacturing, cost and functional constraints. This is a cheap and elegant approach in scenarios where employing active control elements is impractical for reasons of cost and complexity. From an optimization perspective the challenge lies in the efficient, yet thorough global exploration of the multi-dimensional and multi-modal design spaces often yielded by such problems. Morevoer, the designs are often defined by a mixture of continuous and discrete variables - a task that evolutionary algorithms appear to be ideally suited for. In this article we discuss the specific case of the optimization of crop spraying machinery for improved uniformity of spray deposition, subject to structural weight and manufacturing constraints. Using a mixed variable evolutionary algorithm allowed us to optimize both shape and topology. Through this process we have managed to reduce the maximum roll angle of the sprayer by an order of magnitude , whilst allowing only relatively inexpensive changes to the baseline design. Further (though less dramatic) improvements were shown to be possible when we relaxed the cost constraint. We applied the same approach to the inverse problem of reducing the mass while maintaining an acceptable roll angle - a 2% improvement proved possible in this cas

    Review of Metaheuristics and Generalized Evolutionary Walk Algorithm

    Full text link
    Metaheuristic algorithms are often nature-inspired, and they are becoming very powerful in solving global optimization problems. More than a dozen of major metaheuristic algorithms have been developed over the last three decades, and there exist even more variants and hybrid of metaheuristics. This paper intends to provide an overview of nature-inspired metaheuristic algorithms, from a brief history to their applications. We try to analyze the main components of these algorithms and how and why they works. Then, we intend to provide a unified view of metaheuristics by proposing a generalized evolutionary walk algorithm (GEWA). Finally, we discuss some of the important open questions.Comment: 14 page

    Adaptive particle swarm optimization

    Get PDF
    An adaptive particle swarm optimization (APSO) that features better search efficiency than classical particle swarm optimization (PSO) is presented. More importantly, it can perform a global search over the entire search space with faster convergence speed. The APSO consists of two main steps. First, by evaluating the population distribution and particle fitness, a real-time evolutionary state estimation procedure is performed to identify one of the following four defined evolutionary states, including exploration, exploitation, convergence, and jumping out in each generation. It enables the automatic control of inertia weight, acceleration coefficients, and other algorithmic parameters at run time to improve the search efficiency and convergence speed. Then, an elitist learning strategy is performed when the evolutionary state is classified as convergence state. The strategy will act on the globally best particle to jump out of the likely local optima. The APSO has comprehensively been evaluated on 12 unimodal and multimodal benchmark functions. The effects of parameter adaptation and elitist learning will be studied. Results show that APSO substantially enhances the performance of the PSO paradigm in terms of convergence speed, global optimality, solution accuracy, and algorithm reliability. As APSO introduces two new parameters to the PSO paradigm only, it does not introduce an additional design or implementation complexity

    FREE SEARCH AND DIFFERENTIAL EVOLUTION TOWARDS DIMENSIONS NUMBER CHANGE

    Get PDF
    This paper presents an exploration of Free Search (FS) and modified Differential Evolution (DE) with enhanced adaptivity. The aim of the study is to identify how these methods can cope with changes of the number of variables of a hard design test, unaided. The results suggest that both methods can adapt successfully to the variation of the number of variables and constraint conditions. The results are presented. Contributions to the engineering design are replacement in high extent of human based search with machine based and movement of optimisation process from human guided to machine self guided search

    Efficiency Analysis of Swarm Intelligence and Randomization Techniques

    Full text link
    Swarm intelligence has becoming a powerful technique in solving design and scheduling tasks. Metaheuristic algorithms are an integrated part of this paradigm, and particle swarm optimization is often viewed as an important landmark. The outstanding performance and efficiency of swarm-based algorithms inspired many new developments, though mathematical understanding of metaheuristics remains partly a mystery. In contrast to the classic deterministic algorithms, metaheuristics such as PSO always use some form of randomness, and such randomization now employs various techniques. This paper intends to review and analyze some of the convergence and efficiency associated with metaheuristics such as firefly algorithm, random walks, and L\'evy flights. We will discuss how these techniques are used and their implications for further research.Comment: 10 pages. arXiv admin note: substantial text overlap with arXiv:1212.0220, arXiv:1208.0527, arXiv:1003.146
    corecore