155 research outputs found

    Algorithms and methods for video transcoding.

    Get PDF
    Video transcoding is the process of dynamic video adaptation. Dynamic video adaptation can be defined as the process of converting video from one format to another, changing the bit rate, frame rate or resolution of the encoded video, which is mainly necessitated by the end user requirements. H.264 has been the predominantly used video compression standard for the last 15 years. HEVC (High Efficiency Video Coding) is the latest video compression standard finalised in 2013, which is an improvement over H.264 video compression standard. HEVC performs significantly better than H.264 in terms of the Rate-Distortion performance. As H.264 has been widely used in the last decade, a large amount of video content exists in H.264 format. There is a need to convert H.264 video content to HEVC format to achieve better Rate-Distortion performance and to support legacy video formats on newer devices. However, the computational complexity of HEVC encoder is 2-10 times higher than that of H.264 encoder. This makes it necessary to develop low complexity video transcoding algorithms to transcode from H.264 to HEVC format. This research work proposes low complexity algorithms for H.264 to HEVC video transcoding. The proposed algorithms reduce the computational complexity of H.264 to HEVC video transcoding significantly, with negligible loss in Rate-Distortion performance. This work proposes three different video transcoding algorithms. The MV-based mode merge algorithm uses the block mode and MV variances to estimate the split/non-split decision as part of the HEVC block prediction process. The conditional probability-based mode mapping algorithm models HEVC blocks of sizes 16×16 and lower as a function of H.264 block modes, H.264 and HEVC Quantisation Parameters (QP). The motion-compensated MB residual-based mode mapping algorithm makes the split/non-split decision based on content-adaptive classification models. With a combination of the proposed set of algorithms, the computational complexity of the HEVC encoder is reduced by around 60%, with negligible loss in Rate-Distortion performance, outperforming existing state-of-art algorithms by 20-25% in terms of computational complexity. The proposed algorithms can be used in computation-constrained video transcoding applications, to support video format conversion in smart devices, migration of large-scale H.264 video content from host servers to HEVC, cloud computing-based transcoding applications, and also to support high quality videos over bandwidth-constrained networks

    Efficient bit rate transcoding for high efficiency video coding

    Get PDF
    High efficiency video coding (HEVC) shows a significant advance in compression efficiency and is considered to be the successor of H.264/AVC. To incorporate the HEVC standard into real-life network applications and a diversity of other applications, efficient bit rate adaptation (transrating) algorithms are required. A current problem of transrating for HEVC is the high computational complexity associated with the encoder part of such a cascaded pixel domain transcoder. This paper focuses on deriving an optimal strategy for reducing the transcoding complexity with a complexity-scalable scheme. We propose different transcoding techniques which are able to reduce the transcoding complexity in both CU and PU optimization levels. At the CU level, CUs can be evaluated in top-to-bottom or bottom-to-top flows, in which the coding information of the input video stream is utilized to reduce the number of evaluations or to early terminate certain evaluations. At the PU level, the PU candidates are adaptively selected based on the probability of PU sizes and the co-located input PU partitioning. Moreover, with the use of different proposed methods, a complexity-scalable transrating scheme can be achieved. Furthermore, the transcoding complexity can be effectively controlled by the machine learning based approach. Simulations show that the proposed techniques provide a superior transcoding performance compared to the state-of-the-art related works. Additionally, the proposed methods can achieve a range of trade-offs between transrating complexity and coding performance. From the proposed schemes, the fastest approach is able to reduce the complexity by 82% while keeping the bitrate loss below 3%

    Heterogeneous Video Transcoder for H.264/AVC to HEVC

    Get PDF
    The new video coding standard, High Efficiency Video Coding, was developed to succeed the current standard, H.264/Advance Video Coding. However, there is a lot of legacy content encoded with H.264. So the new efficient method is proposed for transcoding the H.264 encoded video into high efficiency video coding format. In proposed method, two stages are implemented. In training stage, transcoding is done using SSD method and different coding parameters or features are extracted from incoming H.264. In transcoding stage, the best mode of outgoing coding unit partitions are decided by calculating threshold value and optimum weight using extracted features. Then it is evaluated by doing experiments on different videos. DOI: 10.17762/ijritcc2321-8169.150615

    Encryption for high efficiency video coding with video adaptation capabilities

    Get PDF
    Video encryption techniques enable applications like digital rights management and video scrambling. Applying encryption on the entire video stream can be computationally costly and prevents advanced video modifications by an untrusted middlebox in the network, like splicing, quality monitoring, watermarking, and transcoding. Therefore, encryption techniques are proposed which influence a small amount of the video stream while keeping the video compliant with its compression standard, High Efficiency Video Coding. Encryption while guaranteeing standard compliance can cause degraded compression efficiency, so depending on their bitrate impact, a selection of encrypted syntax elements should be made. Each element also impacts the quality for untrusted decoders differently, so this aspect should also be considered. In this paper, multiple techniques for partial video encryption are investigated, most of them having a low impact on rate-distortion performance and having a broad range in scrambling performance(1)

    A Bayesian Approach to Block Structure Inference in AV1-based Multi-rate Video Encoding

    Full text link
    Due to differences in frame structure, existing multi-rate video encoding algorithms cannot be directly adapted to encoders utilizing special reference frames such as AV1 without introducing substantial rate-distortion loss. To tackle this problem, we propose a novel bayesian block structure inference model inspired by a modification to an HEVC-based algorithm. It estimates the posterior probabilistic distributions of block partitioning, and adapts early terminations in the RDO procedure accordingly. Experimental results show that the proposed method provides flexibility for controlling the tradeoff between speed and coding efficiency, and can achieve an average time saving of 36.1% (up to 50.6%) with negligible bitrate cost.Comment: published in IEEE Data Compression Conference, 201
    corecore