381 research outputs found

    Spread spectrum-based video watermarking algorithms for copyright protection

    Get PDF
    Merged with duplicate record 10026.1/2263 on 14.03.2017 by CS (TIS)Digital technologies know an unprecedented expansion in the last years. The consumer can now benefit from hardware and software which was considered state-of-the-art several years ago. The advantages offered by the digital technologies are major but the same digital technology opens the door for unlimited piracy. Copying an analogue VCR tape was certainly possible and relatively easy, in spite of various forms of protection, but due to the analogue environment, the subsequent copies had an inherent loss in quality. This was a natural way of limiting the multiple copying of a video material. With digital technology, this barrier disappears, being possible to make as many copies as desired, without any loss in quality whatsoever. Digital watermarking is one of the best available tools for fighting this threat. The aim of the present work was to develop a digital watermarking system compliant with the recommendations drawn by the EBU, for video broadcast monitoring. Since the watermark can be inserted in either spatial domain or transform domain, this aspect was investigated and led to the conclusion that wavelet transform is one of the best solutions available. Since watermarking is not an easy task, especially considering the robustness under various attacks several techniques were employed in order to increase the capacity/robustness of the system: spread-spectrum and modulation techniques to cast the watermark, powerful error correction to protect the mark, human visual models to insert a robust mark and to ensure its invisibility. The combination of these methods led to a major improvement, but yet the system wasn't robust to several important geometrical attacks. In order to achieve this last milestone, the system uses two distinct watermarks: a spatial domain reference watermark and the main watermark embedded in the wavelet domain. By using this reference watermark and techniques specific to image registration, the system is able to determine the parameters of the attack and revert it. Once the attack was reverted, the main watermark is recovered. The final result is a high capacity, blind DWr-based video watermarking system, robust to a wide range of attacks.BBC Research & Developmen

    Towards Optimal Copyright Protection Using Neural Networks Based Digital Image Watermarking

    Get PDF
    In the field of digital watermarking, digital image watermarking for copyright protection has attracted a lot of attention in the research community. Digital watermarking contains varies techniques for protecting the digital content. Among all those techniques,Discrete Wavelet Transform (DWT) provides higher image imperceptibility and robustness. Over the years, researchers have been designing watermarking techniques with robustness in mind, in order for the watermark to be resistant against any image processing techniques. Furthermore, the requirements of a good watermarking technique includes a tradeoff between robustness, image quality (imperceptibility) and capacity. In this paper, we have done an extensive literature review for the existing DWT techniques and those combined with other techniques such as Neural Networks. In addition to that, we have discuss the contribution of Neural Networks in copyright protection. Finally we reached our goal in which we identified the research gaps existed in the current watermarking schemes. So that, it will be easily to obtain an optimal techniques to make the watermark object robust to attacks while maintaining the imperceptibility to enhance the copyright protection

    Application of Discrete Wavelet Transform in Watermarking

    Get PDF

    Multimedia content screening using a dual watermarking and fingerprinting system

    Get PDF

    A review and open issues of diverse text watermarking techniques in spatial domain

    Get PDF
    Nowadays, information hiding is becoming a helpful technique and fetches more attention due to the fast growth of using the internet; it is applied for sending secret information by using different techniques. Watermarking is one of major important technique in information hiding. Watermarking is of hiding secret data into a carrier media to provide the privacy and integrity of information so that no one can recognize and detect it's accepted the sender and receiver. In watermarking, many various carrier formats can be used such as an image, video, audio, and text. The text is most popular used as a carrier files due to its frequency on the internet. There are many techniques variables for the text watermarking; each one has its own robust and susceptible points. In this study, we conducted a review of text watermarking in the spatial domain to explore the term text watermarking by reviewing, collecting, synthesizing and analyze the challenges of different studies which related to this area published from 2013 to 2018. The aims of this paper are to provide an overview of text watermarking and comparison between approved studies as discussed according to the Arabic text characters, payload capacity, Imperceptibility, authentication, and embedding technique to open important research issues in the future work to obtain a robust method

    Data hiding in images based on fractal modulation and diversity combining

    Get PDF
    The current work provides a new data-embedding infrastructure based on fractal modulation. The embedding problem is tackled from a communications point of view. The data to be embedded becomes the signal to be transmitted through a watermark channel. The channel could be the image itself or some manipulation of the image. The image self noise and noise due to attacks are the two sources of noise in this paradigm. At the receiver, the image self noise has to be suppressed, while noise due to the attacks may sometimes be predicted and inverted. The concepts of fractal modulation and deterministic self-similar signals are extended to 2-dimensional images. These novel techniques are used to build a deterministic bi-homogenous watermark signal that embodies the binary data to be embedded. The binary data to be embedded, is repeated and scaled with different amplitudes at each level and is used as the wavelet decomposition pyramid. The binary data is appended with special marking data, which is used during demodulation, to identify and correct unreliable or distorted blocks of wavelet coefficients. This specially constructed pyramid is inverted using the inverse discrete wavelet transform to obtain the self-similar watermark signal. In the data embedding stage, the well-established linear additive technique is used to add the watermark signal to the cover image, to generate the watermarked (stego) image. Data extraction from a potential stego image is done using diversity combining. Neither the original image nor the original binary sequence (or watermark signal) is required during the extraction. A prediction of the original image is obtained using a cross-shaped window and is used to suppress the image self noise in the potential stego image. The resulting signal is then decomposed using the discrete wavelet transform. The number of levels and the wavelet used are the same as those used in the watermark signal generation stage. A thresholding process similar to wavelet de-noising is used to identify whether a particular coefficient is reliable or not. A decision is made as to whether a block is reliable or not based on the marking data present in each block and sometimes corrections are applied to the blocks. Finally the selected blocks are combined based on the diversity combining strategy to extract the embedded binary data

    Integration and optimization of collusion secure fingerprinting in image watermarking

    Get PDF
    Estágio realizado na Fraunhofer SIT - e orientado pelo Dr. Huajian Liu e pelo Dr. Marcel SchäferTese de mestrado integrado. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 201

    Information Analysis for Steganography and Steganalysis in 3D Polygonal Meshes

    Get PDF
    Information hiding, which embeds a watermark/message over a cover signal, has recently found extensive applications in, for example, copyright protection, content authentication and covert communication. It has been widely considered as an appealing technology to complement conventional cryptographic processes in the field of multimedia security by embedding information into the signal being protected. Generally, information hiding can be classified into two categories: steganography and watermarking. While steganography attempts to embed as much information as possible into a cover signal, watermarking tries to emphasize the robustness of the embedded information at the expense of embedding capacity. In contrast to information hiding, steganalysis aims at detecting whether a given medium has hidden message in it, and, if possible, recover that hidden message. It can be used to measure the security performance of information hiding techniques, meaning a steganalysis resistant steganographic/watermarking method should be imperceptible not only to Human Vision Systems (HVS), but also to intelligent analysis. As yet, 3D information hiding and steganalysis has received relatively less attention compared to image information hiding, despite the proliferation of 3D computer graphics models which are fairly promising information carriers. This thesis focuses on this relatively neglected research area and has the following primary objectives: 1) to investigate the trade-off between embedding capacity and distortion by considering the correlation between spatial and normal/curvature noise in triangle meshes; 2) to design satisfactory 3D steganographic algorithms, taking into account this trade-off; 3) to design robust 3D watermarking algorithms; 4) to propose a steganalysis framework for detecting the existence of the hidden information in 3D models and introduce a universal 3D steganalytic method under this framework. %and demonstrate the performance of the proposed steganalysis by testing it against six well-known 3D steganographic/watermarking methods. The thesis is organized as follows. Chapter 1 describes in detail the background relating to information hiding and steganalysis, as well as the research problems this thesis will be studying. Chapter 2 conducts a survey on the previous information hiding techniques for digital images, 3D models and other medium and also on image steganalysis algorithms. Motivated by the observation that the knowledge of the spatial accuracy of the mesh vertices does not easily translate into information related to the accuracy of other visually important mesh attributes such as normals, Chapters 3 and 4 investigate the impact of modifying vertex coordinates of 3D triangle models on the mesh normals. Chapter 3 presents the results of an empirical investigation, whereas Chapter 4 presents the results of a theoretical study. Based on these results, a high-capacity 3D steganographic algorithm capable of controlling embedding distortion is also presented in Chapter 4. In addition to normal information, several mesh interrogation, processing and rendering algorithms make direct or indirect use of curvature information. Motivated by this, Chapter 5 studies the relation between Discrete Gaussian Curvature (DGC) degradation and vertex coordinate modifications. Chapter 6 proposes a robust watermarking algorithm for 3D polygonal models, based on modifying the histogram of the distances from the model vertices to a point in 3D space. That point is determined by applying Principal Component Analysis (PCA) to the cover model. The use of PCA makes the watermarking method robust against common 3D operations, such as rotation, translation and vertex reordering. In addition, Chapter 6 develops a 3D specific steganalytic algorithm to detect the existence of the hidden messages embedded by one well-known watermarking method. By contrast, the focus of Chapter 7 will be on developing a 3D watermarking algorithm that is resistant to mesh editing or deformation attacks that change the global shape of the mesh. By adopting a framework which has been successfully developed for image steganalysis, Chapter 8 designs a 3D steganalysis method to detect the existence of messages hidden in 3D models with existing steganographic and watermarking algorithms. The efficiency of this steganalytic algorithm has been evaluated on five state-of-the-art 3D watermarking/steganographic methods. Moreover, being a universal steganalytic algorithm can be used as a benchmark for measuring the anti-steganalysis performance of other existing and most importantly future watermarking/steganographic algorithms. Chapter 9 concludes this thesis and also suggests some potential directions for future work
    corecore