19 research outputs found

    Online Integration of Semistructured Data

    Get PDF
    Data integration systems play an important role in the development of distributed multi-database systems. Data integration collects data from heterogeneous and distributed sources, and provides a global view of data to the users. Systems need to process user\u27s applications in the shortest possible time. The virtualization approach to data integration systems ensures that the answers to user requests are the most up-to-date ones. In contrast, the materialization approach reduces data transmission time at the expense of data consistency between the central and remote sites. The virtualization approach to data integration systems can be applied in either batch or online mode. Batch processing requires all data to be available at a central site before processing is started. Delays in transmission of data over a network contribute to a longer processing time. On the other hand, in an online processing mode data integration is performed piece-by-piece as soon as a unit of data is available at the central site. An online processing mode presents the partial results to the users earlier. Due to the heterogeneity of data models at the remote sites, a semistructured global view of data is required. The performance of data integration systems depends on an appropriate data model and the appropriate data integration algorithms used. This thesis presents a new algorithm for immediate processing of data collected from remote and autonomous database systems. The algorithm utilizes the idle processing states while the central site waits for completion of data transmission to produce instant partial results. A decomposition strategy included in the algorithm balances of the computations between the central and remote sites to force maximum resource utilization at both sites. The thesis chooses the XML data model for the representation of semistructured data, and presents a new formalization of the XML data model together with a set of algebraic operations. The XML data model is used to provide a virtual global view of semistructured data. The algebraic operators are consistent with operations of relational algebra, such that any existing syntax based query optimization technique developed for the relational model of data can be directly applied. The thesis shows how to optimize online processing by generating one online integration plan for several data increments. Further, the thesis shows how each independent increment expression can be processed in a parallel mode on a multi core processor system. The dynamic scheduling system proposed in the thesis is able to defer or terminate a plan such that materialization updates and unnecessary computations are minimized. The thesis shows that processing data chunks of fragmented XML documents allows for data integration in a shorter period of time. Finally, the thesis provides a clear formalization of the semistructured data model, a set of algorithms with high-level descriptions, and running examples. These formal backgrounds show that the proposed algorithms are implementable

    Using semantics in XML query processing

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    mel - Model Extraction Language and Interpreter

    Get PDF
    There is a large body of research on extracting models from code-related artifacts to enable model-based analyses of large software systems. However, engineers do not always have access to the entire code base of a system: some components may be procured from third-party suppliers based on a model specification or their code may be generated automatically from models. Additionally, the development of software systems does not produce only source code as its output. Modern large software system have various artifacts relevant to them, such as software models, build scripts, test scripts, version control history data, and more. In order to produce a more complete view of a modern software system heterogeneous fact extraction of various artifacts is necessary - not just of source code. This thesis introduces mel— a model extraction language and interpreter for extracting “facts” from models represented in XMI; these facts can be combined with facts extracted from other system components to form a lightweight model of an entire software system. We provide preliminary evidence that mel is sufficient to specify fact extraction from models that have very different XMI representations. We also show that it can be easier to use mel to create a fact extractor for a particular model representation than to develop a specialized fact extractor for the model from scratch

    Exploring a striped XML world

    Get PDF
    EXtensible Markup Language, XML, was designed as a markup language for structuring, storing and transporting data on the World Wide Web. The focus of XML is on data content; arbitrary markup is used to describe data. This versatile, self-describing data representation has established XML as the universal data format and the de facto standard for information exchange on the Web. This has gradually given rise to the need for efficient storage and querying of large XML repositories. To that end, we propose a new model for building a native XML store which is based on a generalisation of vertical decomposition. Nodes of a document satisfying the same label-path, are extracted and stored together in a single container, a Stripe. Stripes make use of a labelling scheme allowing us to maintain full structural information. Over this new representation, we introduce various evaluation techniques, which allow us to handle a large fragment of XPath 2.0. We also focus on the optimisation opportunities that arise from our decomposition model during any query evaluation phase. During query validation, we present an input minimisation process that exploits the proposed model for identifying input that is only relevant to the given query, in terms of Stripes. We also define query equivalence rules for query rewriting over our proposed model. Finally, during query optimisation, we deal with whether and under which circumstances certain evaluation algorithms can be replaced by others having lower I/O and/or CPU cost. We propose three storage schemes under our general decomposition technique. The schemes differ in the compression method imposed on the structural part of the XML document. The first storage scheme imposes no compression. The second storage scheme exploits structural regularities of the document to minimise storage and, thus, I/O cost during query evaluation. Finally, the third storage scheme performs structureagnostic compression of the document structure which results in minimised storage, regardless the actual XML structure. We experiment on XML repositories of varying size, recursion and structural regularity. We consider query input size, execution plan size and query response time as metrics for our experimental results. We process query workloads by applying each of the proposed optimisations in isolation and then all of their combinations. In addition, we apply the same execution pipeline for all proposed storage schemes. As a reference to our proposed query evaluation pipeline, we use the current state-of-the-art system for XML query processing. Our results demonstrate that: • Our proposed data model provides the infrastructure for efficiently selecting the parts of the document that are relevant to a given query. • The application of query rewriting, combined with input minimisation, reduces query input size as well as the number of physical operators used. In addition, when evaluation algorithms are specialised to the decomposition method, query response time is further reduced. • Query evaluation performance is largely affected by the storage schemes, which are closely related to the structural properties of the data. The achieved compression ratio greatly affects storage size and therefore, query response times

    Scalable and Declarative Information Extraction in a Parallel Data Analytics System

    Get PDF
    Informationsextraktions (IE) auf sehr großen Datenmengen erfordert hochkomplexe, skalierbare und anpassungsfähige Systeme. Obwohl zahlreiche IE-Algorithmen existieren, ist die nahtlose und erweiterbare Kombination dieser Werkzeuge in einem skalierbaren System immer noch eine große Herausforderung. In dieser Arbeit wird ein anfragebasiertes IE-System für eine parallelen Datenanalyseplattform vorgestellt, das für konkrete Anwendungsdomänen konfigurierbar ist und für Textsammlungen im Terabyte-Bereich skaliert. Zunächst werden konfigurierbare Operatoren für grundlegende IE- und Web-Analytics-Aufgaben definiert, mit denen komplexe IE-Aufgaben in Form von deklarativen Anfragen ausgedrückt werden können. Alle Operatoren werden hinsichtlich ihrer Eigenschaften charakterisiert um das Potenzial und die Bedeutung der Optimierung nicht-relationaler, benutzerdefinierter Operatoren (UDFs) für Data Flows hervorzuheben. Anschließend wird der Stand der Technik in der Optimierung nicht-relationaler Data Flows untersucht und herausgearbeitet, dass eine umfassende Optimierung von UDFs immer noch eine Herausforderung ist. Darauf aufbauend wird ein erweiterbarer, logischer Optimierer (SOFA) vorgestellt, der die Semantik von UDFs mit in die Optimierung mit einbezieht. SOFA analysiert eine kompakte Menge von Operator-Eigenschaften und kombiniert eine automatisierte Analyse mit manuellen UDF-Annotationen, um die umfassende Optimierung von Data Flows zu ermöglichen. SOFA ist in der Lage, beliebige Data Flows aus unterschiedlichen Anwendungsbereichen logisch zu optimieren, was zu erheblichen Laufzeitverbesserungen im Vergleich mit anderen Techniken führt. Als Viertes wird die Anwendbarkeit des vorgestellten Systems auf Korpora im Terabyte-Bereich untersucht und systematisch die Skalierbarkeit und Robustheit der eingesetzten Methoden und Werkzeuge beurteilt um schließlich die kritischsten Herausforderungen beim Aufbau eines IE-Systems für sehr große Datenmenge zu charakterisieren.Information extraction (IE) on very large data sets requires highly complex, scalable, and adaptive systems. Although numerous IE algorithms exist, their seamless and extensible combination in a scalable system still is a major challenge. This work presents a query-based IE system for a parallel data analysis platform, which is configurable for specific application domains and scales for terabyte-sized text collections. First, configurable operators are defined for basic IE and Web Analytics tasks, which can be used to express complex IE tasks in the form of declarative queries. All operators are characterized in terms of their properties to highlight the potential and importance of optimizing non-relational, user-defined operators (UDFs) for dataflows. Subsequently, we survey the state of the art in optimizing non-relational dataflows and highlight that a comprehensive optimization of UDFs is still a challenge. Based on this observation, an extensible, logical optimizer (SOFA) is introduced, which incorporates the semantics of UDFs into the optimization process. SOFA analyzes a compact set of operator properties and combines automated analysis with manual UDF annotations to enable a comprehensive optimization of data flows. SOFA is able to logically optimize arbitrary data flows from different application areas, resulting in significant runtime improvements compared to other techniques. Finally, the applicability of the presented system to terabyte-sized corpora is investigated. Hereby, we systematically evaluate scalability and robustness of the employed methods and tools in order to pinpoint the most critical challenges in building an IE system for very large data sets

    Techniques for improving efficiency and scalability for the integration of information retrieval and databases

    Get PDF
    PhDThis thesis is on the topic of integration of Information Retrieval (IR) and Databases (DB), with particular focuses on improving efficiency and scalability of integrated IR and DB technology (IR+DB). The main purpose of this study is to develop efficient and scalable techniques for supporting integrated IR and DB technology, which is a popular approach today for handling complex queries over text and structured data. Our specific interest in this thesis is how to efficiently handle queries over large-scale text and structured data. The work is based on a technology that integrates probability theory and relational algebra, where retrievals for text and data are to be expressed in probabilistic logical programs such as probabilistic relational algebra or probabilistic Datalog. To support efficient processing of probabilistic logical programs, we proposed three optimization techniques that focus on aspects covered logical and physical layers, which include: scoring-driven query optimization using scoring expression, query processing with top-k incorporated pipeline, and indexing with relational inverted index. Specifically, scoring expressions are proposed for expressing the scoring or probabilistic semantics of implied scoring functions of PRA expressions, so that efficient query execution plan can be generated by rule-based scoring-driven optimizer. Secondly, to balance efficiency and effectiveness so that to improve query response time, we studied methods for incorporating topk algorithms into pipelined query execution engine for IR+DB systems. Thirdly, the proposed relational inverted index integrates IR-style inverted index and DB-style tuple-based index, which can be used to support efficient probability estimation and aggregation as well as conventional relational operations. Experiments were carried out to investigate the performances of proposed techniques. Experimental results showed that the efficiency and scalability of an IR+DB prototype have been improved, while the system can handle queries efficiently on considerable large data sets for a number of IR tasks

    Constructive Reasoning for Semantic Wikis

    Get PDF
    One of the main design goals of social software, such as wikis, is to support and facilitate interaction and collaboration. This dissertation explores challenges that arise from extending social software with advanced facilities such as reasoning and semantic annotations and presents tools in form of a conceptual model, structured tags, a rule language, and a set of novel forward chaining and reason maintenance methods for processing such rules that help to overcome the challenges. Wikis and semantic wikis were usually developed in an ad-hoc manner, without much thought about the underlying concepts. A conceptual model suitable for a semantic wiki that takes advanced features such as annotations and reasoning into account is proposed. Moreover, so called structured tags are proposed as a semi-formal knowledge representation step between informal and formal annotations. The focus of rule languages for the Semantic Web has been predominantly on expert users and on the interplay of rule languages and ontologies. KWRL, the KiWi Rule Language, is proposed as a rule language for a semantic wiki that is easily understandable for users as it is aware of the conceptual model of a wiki and as it is inconsistency-tolerant, and that can be efficiently evaluated as it builds upon Datalog concepts. The requirement for fast response times of interactive software translates in our work to bottom-up evaluation (materialization) of rules (views) ahead of time – that is when rules or data change, not when they are queried. Materialized views have to be updated when data or rules change. While incremental view maintenance was intensively studied in the past and literature on the subject is abundant, the existing methods have surprisingly many disadvantages – they do not provide all information desirable for explanation of derived information, they require evaluation of possibly substantially larger Datalog programs with negation, they recompute the whole extension of a predicate even if only a small part of it is affected by a change, they require adaptation for handling general rule changes. A particular contribution of this dissertation consists in a set of forward chaining and reason maintenance methods with a simple declarative description that are efficient and derive and maintain information necessary for reason maintenance and explanation. The reasoning methods and most of the reason maintenance methods are described in terms of a set of extended immediate consequence operators the properties of which are proven in the classical logical programming framework. In contrast to existing methods, the reason maintenance methods in this dissertation work by evaluating the original Datalog program – they do not introduce negation if it is not present in the input program – and only the affected part of a predicate’s extension is recomputed. Moreover, our methods directly handle changes in both data and rules; a rule change does not need to be handled as a special case. A framework of support graphs, a data structure inspired by justification graphs of classical reason maintenance, is proposed. Support graphs enable a unified description and a formal comparison of the various reasoning and reason maintenance methods and define a notion of a derivation such that the number of derivations of an atom is always finite even in the recursive Datalog case. A practical approach to implementing reasoning, reason maintenance, and explanation in the KiWi semantic platform is also investigated. It is shown how an implementation may benefit from using a graph database instead of or along with a relational database

    Managing Schema Change in an Heterogeneous Environment

    Get PDF
    Change is inevitable even for persistent information. Effectively managing change of persistent information, which includes the specification, execution and the maintenance of any derived information, is critical and must be addressed by all database systems. Today, for every data model there exists a well-defined set of change primitives that can alter both the structure (the schema) and the data. Several proposals also exist for incrementally propagating a primitive change to any derived information (or view). However, existing support is lacking in two ways. First, change primitives as presented in literature are very limiting in terms of their capabilities allowing users to simply add or remove schema elements. More complex types of changes such the merging or splitting of schema elements are not supported in a principled manner. Second, algorithms for maintaining derived information often do not account for the potential heterogeneity between the source and the target. The goal of this dissertation is to provide solutions that address these two key issues. The first part of this dissertation addresses the challenge of expressing a rich complex set of changes. We propose the SERF (Schema Evolution through an Extensible, Re-usable and Flexible) framework that allows users to perform a wide range of complex user-defined schema transformations. Our approach combines existing schema evolution primitives using OQL (object query language) as the glue logic. Within the context of this work, we look at the different domains in which SERF can be applied, including web site management. To further enrich our framework, we also investigate the optimization and verification of SERF transformations. The second part of this dissertation addresses the problem of maintaining views in the face of source changes when the source and the view are not in the same data model. With today\u27s increasing heterogeneity in information structure, it is critical that maintenance of views addresses the data model boundaries. However, view definitions that go across data models are limited to hard-coded algorithms, thereby making it difficult to develop general maintenance algorithms. We provide a two-step solution for this problem. We have developed a cross algebra, that defines views such that there is no restriction that forces the view and the source data models to be the same. We then define update propagation algorithms that can propagate changes from source to target irrespective of the exact translation and the data models. We validate our ideas by applying them to translation and change propagation between the XML and relational data models

    Efficient Generation and Execution of DAG-Structured Query Graphs

    Get PDF
    Traditional database management systems use tree-structured query evaluation plans. While easy to implement, a tree-structured query evaluation plan is not expressive enough for some optimizations like factoring common algebraic subexpressions or magic sets. These require directed acyclic graphs (DAGs), i.e. shared subplans. This work covers the different aspects of DAG-structured query graphs. First, it introduces a novel framework to reason about sharing of subplans and thus DAG-structured query evaluation plans. Second, it describes the first plan generator capable of generating optimal DAG-structured query evaluation plans. Third, an efficient framework for reasoning about orderings and groupings used by the plan generator is presented. And fourth, a runtime system capable of executing DAG-structured query evaluation plans with minimal overhead is discussed. The experimental results show that with no or only a modest increase of plan generation time, a major reduction of query execution time can be achieved for common queries. This shows that DAG-structured query evaluation plans are serviceable and should be preferred over tree-structured query plans
    corecore