178 research outputs found

    Orbital Angular Momentum Waves: Generation, Detection and Emerging Applications

    Full text link
    Orbital angular momentum (OAM) has aroused a widespread interest in many fields, especially in telecommunications due to its potential for unleashing new capacity in the severely congested spectrum of commercial communication systems. Beams carrying OAM have a helical phase front and a field strength with a singularity along the axial center, which can be used for information transmission, imaging and particle manipulation. The number of orthogonal OAM modes in a single beam is theoretically infinite and each mode is an element of a complete orthogonal basis that can be employed for multiplexing different signals, thus greatly improving the spectrum efficiency. In this paper, we comprehensively summarize and compare the methods for generation and detection of optical OAM, radio OAM and acoustic OAM. Then, we represent the applications and technical challenges of OAM in communications, including free-space optical communications, optical fiber communications, radio communications and acoustic communications. To complete our survey, we also discuss the state of art of particle manipulation and target imaging with OAM beams

    A Prospective Look: Key Enabling Technologies, Applications and Open Research Topics in 6G Networks

    Get PDF
    The fifth generation (5G) mobile networks are envisaged to enable a plethora of breakthrough advancements in wireless technologies, providing support of a diverse set of services over a single platform. While the deployment of 5G systems is scaling up globally, it is time to look ahead for beyond 5G systems. This is driven by the emerging societal trends, calling for fully automated systems and intelligent services supported by extended reality and haptics communications. To accommodate the stringent requirements of their prospective applications, which are data-driven and defined by extremely low-latency, ultra-reliable, fast and seamless wireless connectivity, research initiatives are currently focusing on a progressive roadmap towards the sixth generation (6G) networks. In this article, we shed light on some of the major enabling technologies for 6G, which are expected to revolutionize the fundamental architectures of cellular networks and provide multiple homogeneous artificial intelligence-empowered services, including distributed communications, control, computing, sensing, and energy, from its core to its end nodes. Particularly, this paper aims to answer several 6G framework related questions: What are the driving forces for the development of 6G? How will the enabling technologies of 6G differ from those in 5G? What kind of applications and interactions will they support which would not be supported by 5G? We address these questions by presenting a profound study of the 6G vision and outlining five of its disruptive technologies, i.e., terahertz communications, programmable metasurfaces, drone-based communications, backscatter communications and tactile internet, as well as their potential applications. Then, by leveraging the state-of-the-art literature surveyed for each technology, we discuss their requirements, key challenges, and open research problems

    A review of recent innovations in remote health monitoring

    Get PDF
    The development of remote health monitoring systems has focused on enhancing healthcare services’ efficiency and quality, particularly in chronic disease management and elderly care. These systems employ a range of sensors and wearable devices to track patients’ health status and offer real-time feedback to healthcare providers. This facilitates prompt interventions and reduces hospitalization rates. The aim of this study is to explore the latest developments in the realm of remote health monitoring systems. In this paper, we explore a wide range of domains, spanning antenna designs, small implantable antennas, on-body wearable solutions, and adaptable detection and imaging systems. Our research also delves into the methodological approaches used in monitoring systems, including the analysis of channel characteristics, advancements in wireless capsule endoscopy, and insightful investigations into sensing and imaging techniques. These advancements hold the potential to improve the accuracy and efficiency of monitoring, ultimately contributing to enhanced health outcomes for patients.Publisher's VersionQ2WOS:001130630400001PMID:3813832

    A prospective look: key enabling technologies, applications and open research topics in 6G networks

    Get PDF
    The fifth generation (5G) mobile networks are envisaged to enable a plethora of breakthrough advancements in wireless technologies, providing support of a diverse set of services over a single platform. While the deployment of 5G systems is scaling up globally, it is time to look ahead for beyond 5G systems. This is mainly driven by the emerging societal trends, calling for fully automated systems and intelligent services supported by extended reality and haptics communications. To accommodate the stringent requirements of their prospective applications, which are data-driven and defined by extremely low-latency, ultra-reliable, fast and seamless wireless connectivity, research initiatives are currently focusing on a progressive roadmap towards the sixth generation (6G) networks, which are expected to bring transformative changes to this premise. In this article, we shed light on some of the major enabling technologies for 6G, which are expected to revolutionize the fundamental architectures of cellular networks and provide multiple homogeneous artificial intelligence-empowered services, including distributed communications, control, computing, sensing, and energy, from its core to its end nodes. In particular, the present paper aims to answer several 6G framework related questions: What are the driving forces for the development of 6G? How will the enabling technologies of 6G differ from those in 5G? What kind of applications and interactions will they support which would not be supported by 5G? We address these questions by presenting a comprehensive study of the 6G vision and outlining seven of its disruptive technologies, i.e., mmWave communications, terahertz communications, optical wireless communications, programmable metasurfaces, drone-based communications, backscatter communications and tactile internet, as well as their potential applications. Then, by leveraging the state-of-the-art literature surveyed for each technology, we discuss the associated requirements, key challenges, and open research problems. These discussions are thereafter used to open up the horizon for future research directions

    1-D broadside-radiating leaky-wave antenna based on a numerically synthesized impedance surface

    Get PDF
    A newly-developed deterministic numerical technique for the automated design of metasurface antennas is applied here for the first time to the design of a 1-D printed Leaky-Wave Antenna (LWA) for broadside radiation. The surface impedance synthesis process does not require any a priori knowledge on the impedance pattern, and starts from a mask constraint on the desired far-field and practical bounds on the unit cell impedance values. The designed reactance surface for broadside radiation exhibits a non conventional patterning; this highlights the merit of using an automated design process for a design well known to be challenging for analytical methods. The antenna is physically implemented with an array of metal strips with varying gap widths and simulation results show very good agreement with the predicted performance

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    Metamaterials and Metasurfaces for Wireless Power Transfer and Energy Harvesting

    Get PDF

    WPT, Recent Techniques for Improving System Efficiency

    Get PDF
    Wireless power transfer (WPT) technologies have received much more attention during the last decade due to their effectiveness in wireless charging for a wide range of electronic devices. To transmit power between two points without a physical link, conventional WPT systems use two coils, one coil is a transmitter (Tx) and the other is a receiver (Rx) which generates an induced current from the received power. Two main factors control the performance of the WPT schemes, power transfer efficiency (PTE) and transmission range. Power transfer efficiency refers to how much power received by the rechargeable device compared to the power transmitted from the transmitter; while transmission range indicates the longest distance between transmitter and receiver at which the receiver can receive power within the acceptable range of power transfer efficiency. Several studies were carried out to improve these two parameters. Many techniques are used for WPT such as inductive coupling, magnetic resonance coupling, and strongly coupled systems. Recently, metamaterial structures are also proposed for further transfer efficiency enhancement. Metamaterials work as an electromagnetic lensing structure that focuses the evanescent transmitted power into receiver direction. Transmitting & Receiving antenna systems may be used for sending power in certain radiation direction. Optimizing the transmitter antenna and receiver antenna characteristics increase the efficiency for WPT systems. This chapter will present a survey on different wireless power transmission schemes

    A Defected Metasurface for Field-Localizing Wireless Power Transfer

    Get PDF
    The potential of wireless power transfer (WPT) has attracted considerable interest for various research and commercial applications for home and industry. Two important topics including transfer efficiency and electromotive force (EMF) leakage are concerned with modern WPT systems. This work presents the defected metasurface for localized WPT to prevent the transfer efficiency degraded by tuning the resonance of only one-unit cell at the certain metasurface (MTS). Localization cavities on the metasurface can be formed in a defected metasurface, thus fields can be confined to the region around a small receiver, which enhances the transfer efficiency and reduces leakage of electromagnetic fields. To create a cavity in MTS, a defected unit cell at the receiving coils’ positions for enhancing the efficiency will be designed, aiming to confine the magnetic field. Results show that the peak efficiency of 1.9% for the case of the free space is improved to 60% when the proposed defected metasurface is applied, which corresponds to 31.2 times enhancements. Therefore, the defected MTS can control the wave propagation in two-dimensional of WPT system
    corecore