6,853 research outputs found

    CYBERSAR

    Get PDF
    The project aims at setting up an advanced cyberinfrastructure based on dedicated optical networks to support collaborative research application. The aim of Cybersar computational infrastructure is to support innovative computational applications by using leading edge hardware and technological solutions and to provide an experimental platform for research on the enabling technologies that will power next generation cyberinfrastructures. In particular, in the Visual Computing Group, we study techniques for processing and rendering very large scale 3D datasets on innovative large scale displays.Completato€ 1.291.50

    Advances in massive model visualization in the CYBERSAR project

    Get PDF
    We provide a survey of the major results obtained within the CYBERSAR project in the area of massive data visualization. Despite the impressive improvements in graphics and computational hardware performance, interactive visualization of massive models still remains a challenging problem. To address this problem, we developed methods that exploit the programmability of latest generation graphics hardware, and combine coarse-grained multiresolution models, chunk-based data management with compression, incremental view-dependent level-of-detail selection, and visibility culling. The models that can be interactively rendered with our methods range from multi-gigabyte-sized datasets for general 3D meshes or scalar volumes, to terabyte-sized datasets in the restricted 2.5D case of digital terrain models. Such a performance enables novel ways of exploring massive datasets. In particular, we have demonstrated the capability of driving innovative light field displays able of giving multiple freely moving naked-eye viewers the illusion of seeing and manipulating massive 3D objects with continuous viewer-independent parallax.233-23

    Real-time quality visualization of medical models on commodity and mobile devices

    Get PDF
    This thesis concerns the specific field of visualization of medical models using commodity and mobile devices. Mechanisms for medical imaging acquisition such as MRI, CT, and micro-CT scanners are continuously evolving, up to the point of obtaining volume datasets of large resolutions (> 512^3). As these datasets grow in resolution, its treatment and visualization become more and more expensive due to their computational requirements. For this reason, special techniques such as data pre-processing (filtering, construction of multi-resolution structures, etc.) and sophisticated algorithms have to be introduced in different points of the visualization pipeline to achieve the best visual quality without compromising performance times. The problem of managing big datasets comes from the fact that we have limited computational resources. Not long ago, the only physicians that were rendering volumes were radiologists. Nowadays, the outcome of diagnosis is the data itself, and medical doctors need to render them in commodity PCs (even patients may want to render the data, and the DVDs are commonly accompanied with a DICOM viewer software). Furthermore, with the increasing use of technology in daily clinical tasks, small devices such as mobile phones and tablets can fit the needs of medical doctors in some specific areas. Visualizing diagnosis images of patients becomes more challenging when it comes to using these devices instead of desktop computers, as they generally have more restrictive hardware specifications. The goal of this Ph.D. thesis is the real-time, quality visualization of medium to large medical volume datasets (resolutions >= 512^3 voxels) on mobile phones and commodity devices. To address this problem, we use multiresolution techniques that apply downsampling techniques on the full resolution datasets to produce coarser representations which are easier to handle. We have focused our efforts on the application of Volume Visualization in the clinical practice, so we have a particular interest in creating solutions that require short pre-processing times that quickly provide the specialists with the data outcome, maximize the preservation of features and the visual quality of the final images, achieve high frame rates that allow interactive visualizations, and make efficient use of the computational resources. The contributions achieved during this thesis comprise improvements in several stages of the visualization pipeline. The techniques we propose are located in the stages of multi-resolution generation, transfer function design and the GPU ray casting algorithm itself.Esta tesis se centra en la visualización de modelos médicos de volumen en dispositivos móviles y de bajas prestaciones. Los sistemas médicos de captación tales como escáners MRI, CT y micro-CT, están en constante evolución, hasta el punto de obtener modelos de volumen de gran resolución (> 512^3). A medida que estos datos crecen en resolución, su manejo y visualización se vuelve más y más costoso debido a sus requisitos computacionales. Por este motivo, técnicas especiales como el pre-proceso de datos (filtrado, construcción de estructuras multiresolución, etc.) y algoritmos específicos se tienen que introducir en diferentes puntos de la pipeline de visualización para conseguir la mejor calidad visual posible sin comprometer el rendimiento. El problema que supone manejar grandes volumenes de datos es debido a que tenemos recursos computacionales limitados. Hace no mucho, las únicas personas en el ámbito médico que visualizaban datos de volumen eran los radiólogos. Hoy en día, el resultado de la diagnosis son los datos en sí, y los médicos necesitan renderizar estos datos en PCs de características modestas (incluso los pacientes pueden querer visualizar estos datos, pues los DVDs con los resultados suelen venir acompañados de un visor de imágenes DICOM). Además, con el reciente aumento del uso de las tecnologías en la clínica práctica habitual, dispositivos pequeños como teléfonos móviles o tablets son los más convenientes en algunos casos. La visualización de volumen es más difícil en este tipo de dispositivos que en equipos de sobremesa, pues las limitaciones de su hardware son superiores. El objetivo de esta tesis doctoral es la visualización de calidad en tiempo real de modelos grandes de volumen (resoluciones >= 512^3 voxels) en teléfonos móviles y dispositivos de bajas prestaciones. Para enfrentarnos a este problema, utilizamos técnicas multiresolución que aplican técnicas de reducción de datos a los modelos en resolución original, para así obtener modelos de menor resolución. Hemos centrado nuestros esfuerzos en la aplicación de la visualización de volumen en la práctica clínica, así que tenemos especial interés en diseñar soluciones que requieran cortos tiempos de pre-proceso para que los especialistas tengan rápidamente los resultados a su disposición. También, queremos maximizar la conservación de detalles de interés y la calidad de las imágenes finales, conseguir frame rates altos que faciliten visualizaciones interactivas y que hagan un uso eficiente de los recursos computacionales. Las contribuciones aportadas por esta tesis són mejoras en varias etapas de la pipeline de visualización. Las técnicas que proponemos se situan en las etapas de generación de la estructura multiresolución, el diseño de la función de transferencia y el algoritmo de ray casting en la GPU.Postprint (published version

    An interactive 3D medical visualization system based on a light field display

    Get PDF
    This paper presents a prototype medical data visualization system exploiting a light field display and custom direct volume rendering techniques to enhance understanding of massive volumetric data, such as CT, MRI, and PET scans. The system can be integrated with standard medical image archives and extends the capabilities of current radiology workstations by supporting real-time rendering of volumes of potentially unlimited size on light field displays generating dynamic observer-independent light fields. The system allows multiple untracked naked-eye users in a sufficiently large interaction area to coherently perceive rendered volumes as real objects, with stereo and motion parallax cues. In this way, an effective collaborative analysis of volumetric data can be achieved. Evaluation tests demonstrate the usefulness of the generated depth cues and the improved performance in understanding complex spatial structures with respect to standard techniques.883-893Pubblicat

    Real-time quality visualization of medical models on commodity and mobile devices

    Get PDF
    This thesis concerns the specific field of visualization of medical models using commodity and mobile devices. Mechanisms for medical imaging acquisition such as MRI, CT, and micro-CT scanners are continuously evolving, up to the point of obtaining volume datasets of large resolutions (> 512^3). As these datasets grow in resolution, its treatment and visualization become more and more expensive due to their computational requirements. For this reason, special techniques such as data pre-processing (filtering, construction of multi-resolution structures, etc.) and sophisticated algorithms have to be introduced in different points of the visualization pipeline to achieve the best visual quality without compromising performance times. The problem of managing big datasets comes from the fact that we have limited computational resources. Not long ago, the only physicians that were rendering volumes were radiologists. Nowadays, the outcome of diagnosis is the data itself, and medical doctors need to render them in commodity PCs (even patients may want to render the data, and the DVDs are commonly accompanied with a DICOM viewer software). Furthermore, with the increasing use of technology in daily clinical tasks, small devices such as mobile phones and tablets can fit the needs of medical doctors in some specific areas. Visualizing diagnosis images of patients becomes more challenging when it comes to using these devices instead of desktop computers, as they generally have more restrictive hardware specifications. The goal of this Ph.D. thesis is the real-time, quality visualization of medium to large medical volume datasets (resolutions >= 512^3 voxels) on mobile phones and commodity devices. To address this problem, we use multiresolution techniques that apply downsampling techniques on the full resolution datasets to produce coarser representations which are easier to handle. We have focused our efforts on the application of Volume Visualization in the clinical practice, so we have a particular interest in creating solutions that require short pre-processing times that quickly provide the specialists with the data outcome, maximize the preservation of features and the visual quality of the final images, achieve high frame rates that allow interactive visualizations, and make efficient use of the computational resources. The contributions achieved during this thesis comprise improvements in several stages of the visualization pipeline. The techniques we propose are located in the stages of multi-resolution generation, transfer function design and the GPU ray casting algorithm itself.Esta tesis se centra en la visualización de modelos médicos de volumen en dispositivos móviles y de bajas prestaciones. Los sistemas médicos de captación tales como escáners MRI, CT y micro-CT, están en constante evolución, hasta el punto de obtener modelos de volumen de gran resolución (> 512^3). A medida que estos datos crecen en resolución, su manejo y visualización se vuelve más y más costoso debido a sus requisitos computacionales. Por este motivo, técnicas especiales como el pre-proceso de datos (filtrado, construcción de estructuras multiresolución, etc.) y algoritmos específicos se tienen que introducir en diferentes puntos de la pipeline de visualización para conseguir la mejor calidad visual posible sin comprometer el rendimiento. El problema que supone manejar grandes volumenes de datos es debido a que tenemos recursos computacionales limitados. Hace no mucho, las únicas personas en el ámbito médico que visualizaban datos de volumen eran los radiólogos. Hoy en día, el resultado de la diagnosis son los datos en sí, y los médicos necesitan renderizar estos datos en PCs de características modestas (incluso los pacientes pueden querer visualizar estos datos, pues los DVDs con los resultados suelen venir acompañados de un visor de imágenes DICOM). Además, con el reciente aumento del uso de las tecnologías en la clínica práctica habitual, dispositivos pequeños como teléfonos móviles o tablets son los más convenientes en algunos casos. La visualización de volumen es más difícil en este tipo de dispositivos que en equipos de sobremesa, pues las limitaciones de su hardware son superiores. El objetivo de esta tesis doctoral es la visualización de calidad en tiempo real de modelos grandes de volumen (resoluciones >= 512^3 voxels) en teléfonos móviles y dispositivos de bajas prestaciones. Para enfrentarnos a este problema, utilizamos técnicas multiresolución que aplican técnicas de reducción de datos a los modelos en resolución original, para así obtener modelos de menor resolución. Hemos centrado nuestros esfuerzos en la aplicación de la visualización de volumen en la práctica clínica, así que tenemos especial interés en diseñar soluciones que requieran cortos tiempos de pre-proceso para que los especialistas tengan rápidamente los resultados a su disposición. También, queremos maximizar la conservación de detalles de interés y la calidad de las imágenes finales, conseguir frame rates altos que faciliten visualizaciones interactivas y que hagan un uso eficiente de los recursos computacionales. Las contribuciones aportadas por esta tesis són mejoras en varias etapas de la pipeline de visualización. Las técnicas que proponemos se situan en las etapas de generación de la estructura multiresolución, el diseño de la función de transferencia y el algoritmo de ray casting en la GPU

    Direct volume rendering of unstructured tetrahedral meshes using CUDA and OpenMP

    Get PDF
    Cataloged from PDF version of article.Direct volume visualization is an important method in many areas, including computational fluid dynamics and medicine. Achieving interactive rates for direct volume rendering of large unstructured volumetric grids is a challenging problem, but parallelizing direct volume rendering algorithms can help achieve this goal. Using Compute Unified Device Architecture (CUDA), we propose a GPU-based volume rendering algorithm that itself is based on a cell projection-based ray-casting algorithm designed for CPU implementations. We also propose a multicore parallelized version of the cell-projection algorithm using OpenMP. In both algorithms, we favor image quality over rendering speed. Our algorithm has a low memory footprint, allowing us to render large datasets. Our algorithm supports progressive rendering. We compared the GPU implementation with the serial and multicore implementations. We observed significant speed-ups that, together with progressive rendering, enables reaching interactive rates for large datasets
    corecore