11,365 research outputs found

    Algorithms for advance bandwidth reservation in media production networks

    Get PDF
    Media production generally requires many geographically distributed actors (e.g., production houses, broadcasters, advertisers) to exchange huge amounts of raw video and audio data. Traditional distribution techniques, such as dedicated point-to-point optical links, are highly inefficient in terms of installation time and cost. To improve efficiency, shared media production networks that connect all involved actors over a large geographical area, are currently being deployed. The traffic in such networks is often predictable, as the timing and bandwidth requirements of data transfers are generally known hours or even days in advance. As such, the use of advance bandwidth reservation (AR) can greatly increase resource utilization and cost efficiency. In this paper, we propose an Integer Linear Programming formulation of the bandwidth scheduling problem, which takes into account the specific characteristics of media production networks, is presented. Two novel optimization algorithms based on this model are thoroughly evaluated and compared by means of in-depth simulation results

    Genetic Algorithm-based Mapper to Support Multiple Concurrent Users on Wireless Testbeds

    Full text link
    Communication and networking research introduces new protocols and standards with an increasing number of researchers relying on real experiments rather than simulations to evaluate the performance of their new protocols. A number of testbeds are currently available for this purpose and a growing number of users are requesting access to those testbeds. This motivates the need for better utilization of the testbeds by allowing concurrent experimentations. In this work, we introduce a novel mapping algorithm that aims to maximize wireless testbed utilization using frequency slicing of the spectrum resources. The mapper employs genetic algorithm to find the best combination of requests that can be served concurrently, after getting all possible mappings of each request via an induced sub-graph isomorphism stage. The proposed mapper is tested on grid testbeds and randomly generated topologies. The solution of our mapper is compared to the optimal one, obtained through a brute-force search, and was able to serve the same number of requests in 82.96% of testing scenarios. Furthermore, we show the effect of the careful design of testbed topology on enhancing the testbed utilization by applying our mapper on a carefully positioned 8-nodes testbed. In addition, our proposed approach for testbed slicing and requests mapping has shown an improved performance in terms of total served requests, about five folds, compared to the simple allocation policy with no slicing.Comment: IEEE Wireless Communications and Networking Conference (WCNC) 201

    Building Programmable Wireless Networks: An Architectural Survey

    Full text link
    In recent times, there have been a lot of efforts for improving the ossified Internet architecture in a bid to sustain unstinted growth and innovation. A major reason for the perceived architectural ossification is the lack of ability to program the network as a system. This situation has resulted partly from historical decisions in the original Internet design which emphasized decentralized network operations through co-located data and control planes on each network device. The situation for wireless networks is no different resulting in a lot of complexity and a plethora of largely incompatible wireless technologies. The emergence of "programmable wireless networks", that allow greater flexibility, ease of management and configurability, is a step in the right direction to overcome the aforementioned shortcomings of the wireless networks. In this paper, we provide a broad overview of the architectures proposed in literature for building programmable wireless networks focusing primarily on three popular techniques, i.e., software defined networks, cognitive radio networks, and virtualized networks. This survey is a self-contained tutorial on these techniques and its applications. We also discuss the opportunities and challenges in building next-generation programmable wireless networks and identify open research issues and future research directions.Comment: 19 page
    • …
    corecore