75 research outputs found

    LIPIcs, Volume 274, ESA 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 274, ESA 2023, Complete Volum

    LIPIcs, Volume 258, SoCG 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 258, SoCG 2023, Complete Volum

    LIPIcs, Volume 244, ESA 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 244, ESA 2022, Complete Volum

    Image-Based Rendering Of Real Environments For Virtual Reality

    Get PDF

    Intelligent Transportation Related Complex Systems and Sensors

    Get PDF
    Building around innovative services related to different modes of transport and traffic management, intelligent transport systems (ITS) are being widely adopted worldwide to improve the efficiency and safety of the transportation system. They enable users to be better informed and make safer, more coordinated, and smarter decisions on the use of transport networks. Current ITSs are complex systems, made up of several components/sub-systems characterized by time-dependent interactions among themselves. Some examples of these transportation-related complex systems include: road traffic sensors, autonomous/automated cars, smart cities, smart sensors, virtual sensors, traffic control systems, smart roads, logistics systems, smart mobility systems, and many others that are emerging from niche areas. The efficient operation of these complex systems requires: i) efficient solutions to the issues of sensors/actuators used to capture and control the physical parameters of these systems, as well as the quality of data collected from these systems; ii) tackling complexities using simulations and analytical modelling techniques; and iii) applying optimization techniques to improve the performance of these systems. It includes twenty-four papers, which cover scientific concepts, frameworks, architectures and various other ideas on analytics, trends and applications of transportation-related data

    Bounded-degree Plane Geometric Spanners: Connecting the Dots Between Theory and Practice

    Get PDF
    The construction of bounded-degree plane geometric spanners has been a focus of interest since 2002 when Bose, Gudmundsson, and Smid proposed the first algorithm to construct such spanners. To date, eleven algorithms have been designed with various trade-offs in degree and stretch factor. We have implemented these sophisticated algorithms in C++ using the CGAL library and experimented with them using large synthetic and real-world pointsets. Our experiments have revealed their practical behavior and real-world efficacy. We share the implementations via GitHub for broader uses and future research. We present a simple practical algorithm, named AppxStretchFactor, that can estimate stretch factors (obtains lower bounds on the exact stretch factors) of geometric spanners – a challenging problem for which no practical algorithm is known yet. In our experiments with bounded-degree plane geometric spanners, we find that AppxStretchFactor estimates stretch factors almost precisely. Further, it gives linear runtime performance in practice for the pointset distributions considered in this work, making it much faster than the naive Dijkstra-based algorithm for calculating stretch factors

    Proceedings of the 19th Sound and Music Computing Conference

    Get PDF
    Proceedings of the 19th Sound and Music Computing Conference - June 5-12, 2022 - Saint-Étienne (France). https://smc22.grame.f

    Acceleration of Computational Geometry Algorithms for High Performance Computing Based Geo-Spatial Big Data Analysis

    Get PDF
    Geo-Spatial computing and data analysis is the branch of computer science that deals with real world location-based data. Computational geometry algorithms are algorithms that process geometry/shapes and is one of the pillars of geo-spatial computing. Real world map and location-based data can be huge in size and the data structures used to process them extremely big leading to huge computational costs. Furthermore, Geo-Spatial datasets are growing on all V’s (Volume, Variety, Value, etc.) and are becoming larger and more complex to process in-turn demanding more computational resources. High Performance Computing is a way to breakdown the problem in ways that it can run in parallel on big computers with massive processing power and hence reduce the computing time delivering the same results but much faster.This dissertation explores different techniques to accelerate the processing of computational geometry algorithms and geo-spatial computing like using Many-core Graphics Processing Units (GPU), Multi-core Central Processing Units (CPU), Multi-node setup with Message Passing Interface (MPI), Cache optimizations, Memory and Communication optimizations, load balancing, Algorithmic Modifications, Directive based parallelization with OpenMP or OpenACC and Vectorization with compiler intrinsic (AVX). This dissertation has applied at least one of the mentioned techniques to the following problems. Novel method to parallelize plane sweep based geometric intersection for GPU with directives is presented. Parallelization of plane sweep based Voronoi construction, parallelization of Segment tree construction, Segment tree queries and Segment tree-based operations has been presented. Spatial autocorrelation, computation of getis-ord hotspots are also presented. Acceleration performance and speedup results are presented in each corresponding chapter

    Sensor Signal and Information Processing II

    Get PDF
    In the current age of information explosion, newly invented technological sensors and software are now tightly integrated with our everyday lives. Many sensor processing algorithms have incorporated some forms of computational intelligence as part of their core framework in problem solving. These algorithms have the capacity to generalize and discover knowledge for themselves and learn new information whenever unseen data are captured. The primary aim of sensor processing is to develop techniques to interpret, understand, and act on information contained in the data. The interest of this book is in developing intelligent signal processing in order to pave the way for smart sensors. This involves mathematical advancement of nonlinear signal processing theory and its applications that extend far beyond traditional techniques. It bridges the boundary between theory and application, developing novel theoretically inspired methodologies targeting both longstanding and emergent signal processing applications. The topic ranges from phishing detection to integration of terrestrial laser scanning, and from fault diagnosis to bio-inspiring filtering. The book will appeal to established practitioners, along with researchers and students in the emerging field of smart sensors processing
    corecore