1,593 research outputs found

    A Comparative Analysis of STM Approaches to Reduction Operations in Irregular Applications

    Get PDF
    As a recently consolidated paradigm for optimistic concurrency in modern multicore architectures, Transactional Memory (TM) can help to the exploitation of parallelism in irregular applications when data dependence information is not available up to run- time. This paper presents and discusses how to leverage TM to exploit parallelism in an important class of irregular applications, the class that exhibits irregular reduction patterns. In order to test and compare our techniques with other solutions, they were implemented in a software TM system called ReduxSTM, that acts as a proof of concept. Basically, ReduxSTM combines two major ideas: a sequential-equivalent ordering of transaction commits that assures the correct result, and an extension of the underlying TM privatization mechanism to reduce unnecessary overhead due to reduction memory updates as well as unnecesary aborts and rollbacks. A comparative study of STM solutions, including ReduxSTM, and other more classical approaches to the parallelization of reduction operations is presented in terms of time, memory and overhead.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Virtual Machine Support for Many-Core Architectures: Decoupling Abstract from Concrete Concurrency Models

    Get PDF
    The upcoming many-core architectures require software developers to exploit concurrency to utilize available computational power. Today's high-level language virtual machines (VMs), which are a cornerstone of software development, do not provide sufficient abstraction for concurrency concepts. We analyze concrete and abstract concurrency models and identify the challenges they impose for VMs. To provide sufficient concurrency support in VMs, we propose to integrate concurrency operations into VM instruction sets. Since there will always be VMs optimized for special purposes, our goal is to develop a methodology to design instruction sets with concurrency support. Therefore, we also propose a list of trade-offs that have to be investigated to advise the design of such instruction sets. As a first experiment, we implemented one instruction set extension for shared memory and one for non-shared memory concurrency. From our experimental results, we derived a list of requirements for a full-grown experimental environment for further research

    Towards lightweight and high-performance hardware transactional memory

    Get PDF
    Conventional lock-based synchronization serializes accesses to critical sections guarded by the same lock. Using multiple locks brings the possibility of a deadlock or a livelock in the program, making parallel programming a difficult task. Transactional Memory (TM) is a promising paradigm for parallel programming, offering an alternative to lock-based synchronization. TM eliminates the risk of deadlocks and livelocks, while it provides the desirable semantics of Atomicity, Consistency, and Isolation of critical sections. TM speculatively executes a series of memory accesses as a single, atomic, transaction. The speculative changes of a transaction are kept private until the transaction commits. If a transaction can break the atomicity or cause a deadlock or livelock, the TM system aborts the transaction and rolls back the speculative changes. To be effective, a TM implementation should provide high performance and scalability. While implementations of TM in pure software (STM) do not provide desirable performance, Hardware TM (HTM) implementations introduce much smaller overhead and have relatively good scalability, due to their better control of hardware resources. However, many HTM systems support only the transactions that fit limited hardware resources (for example, private caches), and fall back to software mechanisms if hardware limits are reached. These HTM systems, called best-effort HTMs, are not desirable since they force a programmer to think in terms of hardware limits, to use both HTM and STM, and to manage concurrent transactions in HTM and STM. In contrast with best-effort HTMs, unbounded HTM systems support overflowed transactions, that do not fit into private caches. Unbounded HTM systems often require complex protocols or expensive hardware mechanisms for conflict detection between overflowed transactions. In addition, an execution with overflowed transactions is often much slower than an execution that has only regular transactions. This is typically due to restrictive or approximative conflict management mechanism used for overflowed transactions. In this thesis, we study hardware implementations of transactional memory, and make three main contributions. First, we improve the general performance of HTM systems by proposing a scalable protocol for conflict management. The protocol has precise conflict detection, in contrast with often-employed inexact Bloom-filter-based conflict detection, which often falsely report conflicts between transactions. Second, we propose a best-effort HTM that utilizes the new scalable conflict detection protocol, termed EazyHTM. EazyHTM allows parallel commits for all non-conflicting transactions, and generally simplifies transaction commits. Finally, we propose an unbounded HTM that extends and improves the initial protocol for conflict management, and we name it EcoTM. EcoTM features precise conflict detection, and it efficiently supports large as well as small and short transactions. The key idea of EcoTM is to leverage an observation that very few locations are actually conflicting, even if applications have high contention. In EcoTM, each core locally detects if a cache line is non-conflicting, and conflict detection mechanism is invoked only for the few potentially conflicting cache lines.La Sincronización tradicional basada en los cerrojos de exclusión mutua (locks) serializa los accesos a las secciones críticas protegidas este cerrojo. La utilización de varios cerrojos en forma concurrente y/o paralela aumenta la posibilidad de entrar en abrazo mortal (deadlock) o en un bloqueo activo (livelock) en el programa, está es una de las razones por lo cual programar en forma paralela resulta ser mucho mas dificultoso que programar en forma secuencial. La memoria transaccional (TM) es un paradigma prometedor para la programación paralela, que ofrece una alternativa a los cerrojos. La memoria transaccional tiene muchas ventajas desde el punto de vista tanto práctico como teórico. TM elimina el riesgo de bloqueo mutuo y de bloqueo activo, mientras que proporciona una semántica de atomicidad, coherencia, aislamiento con características similares a las secciones críticas. TM ejecuta especulativamente una serie de accesos a la memoria como una transacción atómica. Los cambios especulativos de la transacción se mantienen privados hasta que se confirma la transacción. Si una transacción entra en conflicto con otra transacción o sea que alguna de ellas escribe en una dirección que la otra leyó o escribió, o se entra en un abrazo mortal o en un bloqueo activo, el sistema de TM aborta la transacción y revierte los cambios especulativos. Para ser eficaz, una implementación de TM debe proporcionar un alto rendimiento y escalabilidad. Las implementaciones de TM en el software (STM) no proporcionan este desempeño deseable, en cambio, las mplementaciones de TM en hardware (HTM) tienen mejor desempeño y una escalabilidad relativamente buena, debido a su mejor control de los recursos de hardware y que la resolución de los conflictos así el mantenimiento y gestión de los datos se hace en hardware. Sin embargo, muchos de los sistemas de HTM están limitados a los recursos de hardware disponibles, por ejemplo el tamaño de las caches privadas, y dependen de mecanismos de software para cuando esos límites son sobrepasados. Estos sistemas HTM, llamados best-effort HTM no son deseables, ya que obligan al programador a pensar en términos de los límites existentes en el hardware que se esta utilizando, así como en el sistema de STM que se llama cuando los recursos son sobrepasados. Además, tiene que resolver que transacciones hardware y software se ejecuten concurrentemente. En cambio, los sistemas de HTM ilimitados soportan un numero de operaciones ilimitadas o sea no están restringidos a límites impuestos artificialmente por el hardware, como ser el tamaño de las caches o buffers internos. Los sistemas HTM ilimitados por lo general requieren protocolos complejos o mecanismos muy costosos para la detección de conflictos y el mantenimiento de versiones de los datos entre las transacciones. Por otra parte, la ejecución de transacciones es a menudo mucho más lenta que en una ejecución sobre un sistema de HTM que este limitado. Esto es debido al que los mecanismos utilizados en el HTM limitado trabaja con conjuntos de datos relativamente pequeños que caben o están muy cerca del núcleo del procesador. En esta tesis estudiamos implementaciones de TM en hardware. Presentaremos tres contribuciones principales: Primero, mejoramos el rendimiento general de los sistemas, al proponer un protocolo escalable para la gestión de conflictos. El protocolo detecta los conflictos de forma precisa, en contraste con otras técnicas basadas en filtros Bloom, que pueden reportar conflictos falsos entre las transacciones. Segundo, proponemos un best-effort HTM que utiliza el nuevo protocolo escalable detección de conflictos, denominado EazyHTM. EazyHTM permite la ejecución completamente paralela de todas las transacciones sin conflictos, y por lo general simplifica la ejecución. Por último, proponemos una extensión y mejora del protocolo inicial para la gestión de conflictos, que llamaremos EcoTM. EcoTM cuenta con detección de conflictos precisa, eficiente y es compatible tanto con transacciones grandes como con pequeñas. La idea clave de EcoTM es aprovechar la observación que en muy pocas ubicaciones de memoria aparecen los conflictos entre las transacciones, incluso en aplicaciones tienen muchos conflictos. En EcoTM, cada núcleo detecta localmente si la línea es conflictiva, además existe un mecanismo de detección de conflictos detallado que solo se activa para las pocas líneas de memoria que son potencialmente conflictivas

    Compilation Optimizations to Enhance Resilience of Big Data Programs and Quantum Processors

    Get PDF
    Modern computers can experience a variety of transient errors due to the surrounding environment, known as soft faults. Although the frequency of these faults is low enough to not be noticeable on personal computers, they become a considerable concern during large-scale distributed computations or systems in more vulnerable environments like satellites. These faults occur as a bit flip of some value in a register, operation, or memory during execution. They surface as either program crashes, hangs, or silent data corruption (SDC), each of which can waste time, money, and resources. Hardware methods, such as shielding or error correcting memory (ECM), exist, though they can be difficult to implement, expensive, and may be limited to only protecting against errors in specific locations. Researchers have been exploring software detection and correction methods as an alternative, commonly trading either overhead in execution time or memory usage to protect against faults. Quantum computers, a relatively recent advancement in computing technology, experience similar errors on a much more severe scale. The errors are more frequent, costly, and difficult to detect and correct. Error correction algorithms like Shor’s code promise to completely remove errors, but they cannot be implemented on current noisy intermediate-scale quantum (NISQ) systems due to the low number of available qubits. Until the physical systems become large enough to support error correction, researchers instead have been studying other methods to reduce and compensate for errors. In this work, we present two methods for improving the resilience of classical processes, both single- and multi-threaded. We then introduce quantum computing and compare the nature of errors and correction methods to previous classical methods. We further discuss two designs for improving compilation of quantum circuits. One method, focused on quantum neural networks (QNNs), takes advantage of partial compilation to avoid recompiling the entire circuit each time. The other method is a new approach to compiling quantum circuits using graph neural networks (GNNs) to improve the resilience of quantum circuits and increase fidelity. By using GNNs with reinforcement learning, we can train a compiler to provide improved qubit allocation that improves the success rate of quantum circuits

    Performance Optimization Strategies for Transactional Memory Applications

    Get PDF
    This thesis presents tools for Transactional Memory (TM) applications that cover multiple TM systems (Software, Hardware, and hybrid TM) and use information of all different layers of the TM software stack. Therefore, this thesis addresses a number of challenges to extract static information, information about the run time behavior, and expert-level knowledge to develop these new methods and strategies for the optimization of TM applications
    corecore